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Supervised Learning

• Goal: learn a mapping f from an input space X to an

output space S given a set of n training samples

{(xi , si )}i=1..n such that (xi , si ) ∈ X × S.

• Parametrized function: the function f can be

parametrized with a set of weights θ ∈ Θ, denoted fθ.

fθ : X 7→ S
x → ŝ

• Optimization problem: for a given loss function L
(MSE, Cross-Entropy, ...):

min
θ∈Θ

n∑
i=1

L(si , fθ(xi )) + λΩ(θ)

Figure 1: Linear Regression
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Deep Learning

• Artifical Neural Networks (ANN): collection of

connected nodes with weights on edges

• Deep Neural Networks (DNN): Several layers of

ANN stacked together

• Weights Update: Gradient descent algorithm:

θt+1 = θt − η
∑
i

∇θL(si , fθ(xi ))

• Applications: Computer vision, image processing,

natural language processing, speech recognition ..

Figure 2: Deep neural

network with 3 layers
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Deep Learning

• Upsides:

• good performances

• no need for hand-crafted features

• scalable

• fast inference

• Downsides:

• black box (non-interpretable)

• requires a (large) training set with groundtruth labels

• requires dedicated hardware (GPUs, TPUs) for training
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Model-based method for inverse problems

Figure 3: Inverse problem: principle

Figure 4: Model-based method
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Model-based method for inverse problems

From a statistical standpoint, the problem can be described with maximum a

posteriori (MAP):

x̂MAP = arg max
x

p(x |y)

= arg max
x

p(y |x)p(x)

p(y)

= arg max
x

log(p(y |x)) + log(p(x))− log(p(y))

= arg min
x
−log(p(y |x))− log(p(x))

= arg min
x

f (x)︸︷︷︸
Forward model

+ h(x)︸︷︷︸
Prior
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Model-Based Approaches

• Dominating type of algorithm in signal processing

• Hand-designed from domain knowledge

• Do not rely on data to learn the mapping, but data is used to estimate a small

number of parameters

• Explicit model of the relationship between input and output variables

• Examples: Kalman filter, Iterative Shrinkage Thresholding Algorithm (ISTA),

Alternating Direction Method of Multipliers (ADMM), etc ..
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Model-Based Approaches

• Upsides:

• Interpretability

• Good performances if the model accurate and perfectly known

• Downsides:

• Requires domain knowledge (statistical models, or deterministic rules)

• Rely on some assumptions about the underlying statistics, which do not always hold

(linear system, Gaussian and independant noise, etc..)
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Model-Based Deep Learning

• Model-Aided network: specific DNN

architecture tailored for the problem at hand

• DNN-Aided inference: specific parts of the

model-based algorithm are augmented with

deep learning tools

(a) Model-Aided network

(b) DNN-Aided inference
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Model-Based Deep Learning1

Figure 6: Illustration of model-based versus data-driven inference. The red arrows correspond

to computation performed before the particular inference data is received.
1Nir Shlezinger et al. “Model-based deep learning”. In: arXiv preprint arXiv:2012.08405 (2020).

9



Model-Based Deep Learning

Figure 7: Division of model-based deep learning techniques into categories and sub-categories. 10



LISTA2

• Sparse Coding Let x ∈ Rn the input noisy signal. We try to solve the following

sparse decomposition problem:

min
α

1

2
||x− Dα||2 + λ||α||1 (1)

where D = [d1, · · · , dp] ∈ Rn×p is the dictionary, the sparse vector α ∈ Rp is the

code, and λ is the regularization constant.

2Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”. In: International

Conference on Machine Learning. 2010.
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LISTA

• Iterative Shrinkage Thresholding Algorithm (ISTA)3

ISTA and FISTA [Beck & Teboulle, 2009] : model-based iterative algorithm to

solve problem (1):

α(k+1) = Sλ

[
α(k) + ηD>(x− Dα(k))

]
(2)

such that D ∈ Rn×p, λ, η ∈ R and Sλ the thresholding function defined by:

∀j ∈ J1, pK, Sη(α)j = sign(αj)max(0, |αj | − λ) (3)

3Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse

problems”. In: SIAM journal on imaging sciences (2009).
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LISTA

• Iterative Shrinkage Thresholding Algorithm (ISTA)

Figure 8: ISTA for signal denoising on a toy example.
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LISTA

• Learned ISTA (LISTA)

The iterative steps to solve (1) (gradient descent +

soft-thresholding) can be unrolled to a DNN of fixed

depth K, such that D ∈ Rn×p, λ ∈ Rp, and η ∈ R
become learnable parameters (weights of the network).

α(k+1) = Sλ

[
α(k) + ηD>(x− Dα(k))

]
(4)

Figure 9: Unrolled

iterations (original

notations)

14



LISTA

• Reduced number of parameters w.r.t. DNN-based denoiser

• Fast inference speed

• Interpretable model parameters

• Smaller amount of training data needed

• Can be trained on non-gaussian noise

• Can be extended to 2D of 3D data with image patches
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Deep Unfolded Projected Gradient Descent4

• System model: Symbol detection

x = Hs + w

with x ∈ Rn the observation, s ∈ S = {±1}K the signal to recover, and w ∈ Rn

i.i.d Gaussian noise. The channel matrix H ∈ Rn×K is known.

• Problem:

ŝ = arg min
s∈{±1}K

||x− Hs||2

The search space becomes too large for large values of K (2K ).

4Neev Samuel, Tzvi Diskin, and Ami Wiesel. “Learning to detect”. In: IEEE Transactions on Signal

Processing (2019).
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Deep Unfolded Projected Gradient Descent

• Model-based algorithm: Projected Gradient Descent

• Unfolded DetNet: Projected Gradient Descent

with trainable parameters

• Results:
• requires an order of magnitude less iterations (layers), improved runtime

• competitive performances
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Deep Unfolded Dictionary Learning

• System model: reconstruct clean signal µ ∈ Rn disturbed with Poisson noise

from a noisy measurement x ∈ Rn, with some a priori knowledge:

Figure 10: Convolutional generative model (CGM), s ∈ Rn is sparse

• Problem: Poisson noise + CGM

In this case, the matrix H is not known.
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Deep Unfolded Dictionary Learning

• Model-based algorithm: Proximal Gradient mapping, 2-steps process

Figure 11: First step: update of the code s

Figure 12: Second step: update of the dictionary H
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Deep Unfolded Dictionary Learning

• Deep Convolutional Exponential-Family Autoencoder (DCEA): Unrolled

iterations:

Two variants: DCEA-C (W1 = W2) and DCEA-UC (W1 6= W2).

• Results:
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DNN-aided inference



Plug-and-Play Networks for Image Restoration5

• System Model:

x = Hs + w

with x ∈ Rm the observation, s ∈ Rn the signal to recover, and w ∈ Rm i.i.d

Gaussian noise, and H ∈ Rm×n.

• Problem:

5Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. “Plug-and-play priors for

model based reconstruction”. In: 2013 IEEE Global Conference on Signal and Information Processing.
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Plug-and-Play Networks for Image Restoration

• Model-Based: Alternating Direction Method of Multipliers (ADMM)

The problem can be reformulated as:

which can be processed with ADMM.

The second step can be replaced by a pre-trained DNN denoiser fθ:
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Plug-and-Play Networks for Image Restoration

• Results:

Figure 13: Normalized MSE versus iteration for the recovery of cardiac MRI images.
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Image burst super-resolution6

6Bruno Lecouat, Jean Ponce, and Julien Mairal. “Lucas-kanade reloaded: End-to-end super-resolution

from raw image bursts”. In: Proceedings of the IEEE/CVF International Conference on Computer

Vision. 2021, pp. 2370–2379.
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Image burst super-resolution

• Image Formation Model: k low-resolution frames yk, one high-resolution latent

image x.
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Image burst super-resolution

• Objective Function:

Which can be re-written (variable splitting) as:

• Updating latent variables:

The last step is replaced by a CNN: xt = fθ(zt)
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Conclusion

• The integration of deep learning facilitates inference in complex environments,

where accurately capturing the underlying model may be be infeasible

• Model-based deep learning systems require notably less data in order to learn an

accurate mapping

• M system combining DNNs with model-based inference often provides the ability

to analyze its resulting predictions, yielding interpretability and confidence

which are commonly challenging to obtain with conventional black-box deep

learning.
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Application to Direct Imaging

• Local approach (patch-based)

(x̂ , α̂, p̂) = arg min
(x ,α,p)

||y − x − αH(p)||2 + λφθ(x)

• Update:

bt = y − αt−1H(p)

βt = Sλ[βt−1 + CT (bt − Dβt−1)]

r t = Dβt

αt = αt−1 + ρtH(p)T (r t − H(p))
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Application to Direct Imaging

• Motivation: Failure case of CNN (self-subtraction)

(a) CNN (b) Unrolled Model (c) Rel. Err. vs separation

Figure 14: Rel. Err. on Blank cube
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Application to Direct Imaging

• Global approach (optical model)7 Apodized Lyot Coronograph (APLC)

7Faustine Cantalloube et al. “Peering through SPHERE Images: A Glance at Contrast Limitations”.

In: arXiv preprint arXiv:1907.03624 (2019).

30



Application to Direct Imaging

• Upsides:

• Leverage the symmetries in the image

• Model the high contrast inherent to direct imaging

• Integration of metadata in the optical model (wind halo, waffle pattern)

• Temporally and spatially varying off-axis PSF

• Potential issues:

• Inversion problem close to phase retrieval, which is notoriously difficult

• The true image formation model is the long exposure PSF, integrated over

multiple wavelengths
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