Model-Based Deep Learning

COBREX week 2022

Supervised Learning

- Goal: learn a mapping f from an input space $\mathcal X$ to an output space S given a set of *n* training samples $\{(x_i, s_i)\}_{i=1..n}$ such that $(x_i, s_i) \in \mathcal{X} \times \mathcal{S}$.
- Parametrized function: the function f can be parametrized with a set of weights $\theta \in \Theta$, denoted f_{θ} .

$$
f_{\theta}: \mathcal{X} \mapsto \mathcal{S}
$$

$$
x \to \hat{s}
$$

• Optimization problem: for a given loss function \mathcal{L} (MSE, Cross-Entropy, ...):

$$
\min_{\theta \in \Theta} \ \sum_{i=1}^n \mathcal{L}(s_i, f_{\theta}(x_i)) + \lambda \Omega(\theta)
$$

Figure 1: Linear Regression

- Artifical Neural Networks (ANN): collection of connected nodes with weights on edges
- Deep Neural Networks (DNN): Several layers of ANN stacked together
- Weights Update: Gradient descent algorithm:

$$
\theta_{t+1} = \theta_t - \eta \sum_i \nabla_{\theta} \mathcal{L}(s_i, f_{\theta}(x_i))
$$

• **Applications**: Computer vision, image processing, natural language processing, speech recognition ..

Figure 2: Deep neural network with 3 layers

• Upsides:

- good performances
- no need for hand-crafted features
- scalable
- fast inference
- Downsides:
	- black box (non-interpretable)
	- requires a (large) training set with groundtruth labels
	- requires dedicated hardware (GPUs, TPUs) for training

Model-based method for inverse problems

Figure 3: Inverse problem: principle

Figure 4: Model-based method

From a statistical standpoint, the problem can be described with maximum a posteriori (MAP):

$$
\hat{x}_{MAP} = \arg \max_{x} p(x|y)
$$
\n
$$
= \arg \max_{x} \frac{p(y|x)p(x)}{p(y)}
$$
\n
$$
= \arg \max_{x} log(p(y|x)) + log(p(x)) - log(p(y))
$$
\n
$$
= \arg \min_{x} -log(p(y|x)) - log(p(x))
$$
\n
$$
= \arg \min_{x} \underbrace{f(x)}_{\text{Forward model}} + \underbrace{h(x)}_{\text{Prior}}
$$

- Dominating type of algorithm in signal processing
- Hand-designed from domain knowledge
- Do not rely on data to learn the mapping, but data is used to estimate a small number of parameters
- Explicit model of the relationship between input and output variables
- Examples: Kalman filter, Iterative Shrinkage Thresholding Algorithm (ISTA), Alternating Direction Method of Multipliers (ADMM), etc ..

• Upsides:

- Interpretability
- Good performances if the model accurate and perfectly known
- Downsides:
	- Requires domain knowledge (statistical models, or deterministic rules)
	- Rely on some assumptions about the underlying statistics, which do not always hold (linear system, Gaussian and independant noise, etc..)

Model-Based Deep Learning

- Model-Aided network: specific DNN architecture tailored for the problem at hand
- DNN-Aided inference: specific parts of the model-based algorithm are augmented with deep learning tools

(b) DNN-Aided inference

Model-Based Deep Learning¹

Figure 6: Illustration of model-based versus data-driven inference. The red arrows correspond to computation performed before the particular inference data is received.

¹Nir Shlezinger et al. "Model-based deep learning". In: $arXiv$ preprint $arXiv:2012.08405$ (2020).

Model-Based Deep Learning

Figure 7: Division of model-based deep learning techniques into categories and sub-categories. 10

• Sparse Coding Let $x \in \mathbb{R}^n$ the input noisy signal. We try to solve the following sparse decomposition problem:

$$
\min_{\alpha} \frac{1}{2} ||x - D\alpha||^2 + \lambda ||\alpha||_1 \tag{1}
$$

where $\mathsf{D}=[\mathsf{d}_1,\cdots,\mathsf{d}_p]\in\mathbb{R}^{n\times p}$ is the dictionary, the sparse vector $\alpha\in\mathbb{R}^p$ is the code, and λ is the regularization constant.

²Karol Gregor and Yann LeCun. "Learning fast approximations of sparse coding". In: International Conference on Machine Learning. 2010.

• Iterative Shrinkage Thresholding Algorithm (ISTA) 3 ISTA and FISTA [Beck & Teboulle, 2009] : model-based iterative algorithm to solve problem [\(1\)](#page-13-0):

$$
\alpha^{(k+1)} = \mathsf{S}_{\lambda} \left[\alpha^{(k)} + \eta \mathsf{D}^{\top} (\mathsf{x} - \mathsf{D} \alpha^{(k)}) \right] \tag{2}
$$

such that $\mathsf{D} \in \mathbb{R}^{n \times p}$, $\lambda, \eta \in \mathbb{R}$ and \mathcal{S}_λ the thresholding function defined by:

$$
\forall j \in [1, p], \quad S_{\eta}(\alpha)_j = sign(\alpha_j) max(0, |\alpha_j| - \lambda)
$$
 (3)

 $3A$ mir Beck and Marc Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems". In: SIAM journal on imaging sciences (2009).

LISTA

• Iterative Shrinkage Thresholding Algorithm (ISTA)

Figure 8: ISTA for signal denoising on a toy example.

• Learned ISTA (LISTA)

The iterative steps to solve (1) (gradient descent + soft-thresholding) can be unrolled to a DNN of fixed depth K, such that $D \in \mathbb{R}^{n \times p}$, $\lambda \in \mathbb{R}^p$, and $\eta \in \mathbb{R}^p$ become learnable parameters (weights of the network).

$$
\alpha^{(k+1)} = \mathsf{S}_{\lambda} \Big[\alpha^{(k)} + \eta \mathsf{D}^{\top} (\mathsf{x} - \mathsf{D} \alpha^{(k)}) \Big] \tag{4}
$$

Figure 9: Unrolled iterations (original notations)

- Reduced number of parameters w.r.t. DNN-based denoiser
- Fast inference speed
- Interpretable model parameters
- Smaller amount of training data needed
- Can be trained on non-gaussian noise
- Can be extended to 2D of 3D data with image patches

Deep Unfolded Projected Gradient Descent⁴

• System model: Symbol detection

 $x = Hs + w$

with $\mathbf{x}\in\mathbb{R}^n$ the observation, $\mathbf{s}\in\mathcal{S}=\{\pm1\}^K$ the signal to recover, and $\mathbf{w}\in\mathbb{R}^n$ i.i.d Gaussian noise. The channel matrix $\textbf{H} \in \mathbb{R}^{n \times K}$ is known.

• Problem:

$$
\hat{s} = \underset{\mathbf{s} \in \{\pm 1\}^K}{\arg \min} ||\mathbf{x} - \mathsf{Hs}||^2
$$

The search space becomes too large for large values of $K(2^K)$.

⁴Neev Samuel, Tzvi Diskin, and Ami Wiesel. "Learning to detect". In: IEEE Transactions on Signal Processing (2019).

Deep Unfolded Projected Gradient Descent

• Model-based algorithm: Projected Gradient Descent

$$
\begin{aligned} \hat{\boldsymbol{s}}_{q+1} &= \mathcal{P}_{\mathcal{S}}\left(\hat{\boldsymbol{s}}_{q} - \eta_q \left.\frac{\partial\|\boldsymbol{x} - \boldsymbol{H}\boldsymbol{s}\|^2}{\partial\boldsymbol{s}}\right|_{\boldsymbol{s} = \hat{\boldsymbol{s}}_q}\right) \\ &= \mathcal{P}_{\mathcal{S}}\left(\hat{\boldsymbol{s}}_{q} - \eta_q \boldsymbol{H}^T\boldsymbol{x} + \eta_q \boldsymbol{H}^T\boldsymbol{H}\hat{\boldsymbol{s}}_q\right) \end{aligned}
$$

• Unfolded DetNet: Projected Gradient Descent

$$
\boldsymbol{z}_q \!=\! \text{ReLU}\left(\boldsymbol{W}_{1,q}\left((\boldsymbol{I}\!+\!\delta_{2,q}\boldsymbol{H}^T\boldsymbol{H})\hat{\boldsymbol{s}}_{q-1}\!-\!\delta_{1,q}\boldsymbol{H}^T\boldsymbol{x}\right)\!+\!\boldsymbol{b}_{1,q}\right)
$$

 $\hat{\mathbf{s}}_q = \text{soft sign}(\boldsymbol{W}_{2,q}\boldsymbol{z}_q + \boldsymbol{b}_{2,q})$

with trainable parameters

$$
\pmb{\theta} = \{(\bm{W}_{1,q}, \bm{W}_{2,q}, \bm{b}_{1,q}, \bm{b}_{2,q}, \delta_{1,q}, \delta_{2,q})\}_{q=1}^Q
$$

• Results:

- requires an order of magnitude less iterations (layers), improved runtime
- competitive performances

Deep Unfolded Dictionary Learning

• System model: reconstruct clean signal $\mu \in \mathbb{R}^n$ disturbed with Poisson noise from a noisy measurement $x \in \mathbb{R}^n$, with some a priori knowledge:

$$
\log(\boldsymbol{\mu}) = \sum_{c=1}^C \boldsymbol{h}_c * \boldsymbol{s}^c = \boldsymbol{H}\boldsymbol{s}
$$

Figure 10: Convolutional generative model (CGM), $s \in \mathbb{R}^n$ is sparse

• Problem: Poisson noise $+$ CGM

$$
\begin{aligned} \left(\hat{\boldsymbol{s}}, \{\hat{\boldsymbol{h}}_{c}\}_{c=1}^{C}\right) &= \underset{\boldsymbol{s}, \{\boldsymbol{h}_{c}\}}{\arg\min} - \log p_{\boldsymbol{x}|\boldsymbol{\mu}}(\boldsymbol{x}|\boldsymbol{\mu} = \boldsymbol{H}\boldsymbol{s}) + \lambda \|\boldsymbol{s}\|_{1} \\ &= \underset{\boldsymbol{s}, \{\boldsymbol{h}_{c}\}}{\arg\min} \boldsymbol{1}^{T} \exp\left(\boldsymbol{H}\boldsymbol{s}\right) - \boldsymbol{x}^{T} \boldsymbol{H}\boldsymbol{s} + \lambda \|\boldsymbol{s}\|_{1}, \end{aligned}
$$

In this case, the matrix H is not known.

• Model-based algorithm: Proximal Gradient mapping, 2-steps process

$$
\hat{\boldsymbol{s}}_{q+1} = \mathcal{T}_b\left(\hat{\boldsymbol{s}}_{q} + \eta \boldsymbol{H}^T\left(\boldsymbol{x} - \exp\left(\boldsymbol{H}\hat{\boldsymbol{s}}_{q}\right)\right)\right)
$$

Figure 11: First step: update of the code s

$$
\hat{H}_{l+1} = \operatorname*{arg\,min}_{\mathbf{H}} \mathbf{1}^T \exp(\mathbf{H}\mathbf{s}) - \mathbf{x}^T \mathbf{H}\mathbf{s}
$$
\nsubject to
$$
\mathbf{s} = \hat{\mathbf{s}}_{l+1}.
$$

Figure 12: Second step: update of the dictionary H

Deep Unfolded Dictionary Learning

• Deep Convolutional Exponential-Family Autoencoder (DCEA): Unrolled iterations:

$$
\hat{\boldsymbol{s}}_{q+1} = \mathcal{T}_{b}\left(\hat{\boldsymbol{s}}_{q} + \eta \boldsymbol{W}^T_2\left(\boldsymbol{x} - \exp\left(\boldsymbol{W}_1\hat{\boldsymbol{s}}_q\right)\right)\right)
$$

Two variants: DCEA-C ($W_1 = W_2$) and DCEA-UC ($W_1 \neq W_2$).

• Results:

[DNN-aided inference](#page-23-0)

Plug-and-Play Networks for Image Restoration⁵

• System Model:

$$
\mathbf{x} = \mathbf{H}\mathbf{s} + \mathbf{w}
$$

with $\mathbf{x} \in \mathbb{R}^m$ the observation, $\mathbf{s} \in \mathbb{R}^n$ the signal to recover, and $\mathbf{w} \in \mathbb{R}^m$ i.i.d Gaussian noise, and $\mathbf{H} \in \mathbb{R}^{m \times n}$.

• Problem:

$$
\hat{s} = \underset{s}{\arg\min} -\log p(s|x)
$$

$$
= \underset{s}{\arg\min} -\log p(x|s) - \log p(s)
$$

$$
= \underset{s}{\arg\min} \frac{1}{2} ||x - Hs||^2 + \phi(s)
$$

⁵Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. "Plug-and-play priors for model based reconstruction". In: 2013 IEEE Global Conference on Signal and Information Processing.

Plug-and-Play Networks for Image Restoration

• Model-Based: Alternating Direction Method of Multipliers (ADMM) The problem can be reformulated as:

$$
\hat{s} = \underset{s}{\arg\min} \min_{v} \frac{1}{2} ||x - Hs||^2 + \phi(v)
$$

subject to $v = s$.

which can be processed with ADMM.

$$
\hat{s}_{q+1} = \arg\min_{s} \frac{\alpha}{2} ||\mathbf{x} - \mathbf{H}\mathbf{s}||^{2} + \frac{1}{2} ||\mathbf{s} - (\mathbf{v}_{q} - \mathbf{u}_{q})||^{2}
$$

$$
\mathbf{v}_{q+1} = \arg\min_{v} \alpha \phi(v) + \frac{1}{2} ||v - (\hat{s}_{q+1} + \mathbf{u}_{q})||^{2},
$$

$$
\mathbf{u}_{q+1} = \mathbf{u}_{q} + (\hat{s}_{q+1} - \mathbf{v}_{q+1}).
$$

The second step can be replaced by a pre-trained DNN denoiser f_{θ} :

$$
\boldsymbol{v}_{q+1} = f_{\boldsymbol{\theta}}\left(\hat{\boldsymbol{s}}_{q+1} + \boldsymbol{u}_{q}; \alpha_{q}\right)
$$

Plug-and-Play Networks for Image Restoration

• Results:

Figure 13: Normalized MSE versus iteration for the recovery of cardiac MRI images.

Image burst super-resolution 6

⁶Bruno Lecouat, Jean Ponce, and Julien Mairal. "Lucas-kanade reloaded: End-to-end super-resolution from raw image bursts". In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 2370–2379.

Image burst super-resolution

• Image Formation Model: k low-resolution frames y_k , one high-resolution latent image x.

$$
\mathbf{y}_k = DBW_{\mathbf{p}_k} \mathbf{x} + \varepsilon_k \text{ for } k = 1, \dots, K,
$$

Image burst super-resolution

• Objective Function:

$$
\frac{1}{2}\|\mathbf{y}-U_{\mathbf{p}}\mathbf{x}\|^2+\lambda\phi_{\theta}(\mathbf{x}),
$$

Which can be re-written (variable splitting) as:

$$
E_{\mu}(\mathbf{x}, \mathbf{z}, \mathbf{p}) = \frac{1}{2} ||\mathbf{y} - U_{\mathbf{p}} \mathbf{z}||^{2} + \frac{\mu}{2} ||\mathbf{z} - \mathbf{x}||^{2} + \lambda \phi_{\theta}(\mathbf{x}),
$$

• Updating latent variables:

$$
\mathbf{z}^{t} \leftarrow \mathbf{z}^{t-1} - \eta_{t} \left[U_{\mathbf{p}^{t-1}}^{\top} (U_{\mathbf{p}^{t-1}} \mathbf{z}^{t-1} - \mathbf{y}) + \mu(\mathbf{z}^{t-1} - \mathbf{x}^{t-1}) \right]
$$

$$
\mathbf{p}_{k}^{t} \leftarrow \mathbf{p}_{k}^{t-1} - \left(\mathbf{J}_{k}^{t \top} \mathbf{J}_{k}^{t} \right)^{-1} \mathbf{J}_{k}^{t \top} \mathbf{r}_{k}^{t}
$$

$$
\mathbf{x}^{t} \leftarrow \arg\min_{\mathbf{x}} \frac{\mu_{t-1}}{2} ||\mathbf{z}^{t} - \mathbf{x}||^{2} + \lambda \phi_{\theta}(\mathbf{x})
$$

The last step is replaced by a CNN: $\mathbf{x}^t = f_\theta(\mathbf{z}^t)$

- The integration of deep learning facilitates inference in **complex environments**, where accurately capturing the underlying model may be be infeasible
- Model-based deep learning systems require notably less data in order to learn an accurate mapping
- M system combining DNNs with model-based inference often provides the ability to analyze its resulting predictions, yielding interpretability and confidence which are commonly challenging to obtain with conventional **black-box deep** learning.

• Local approach (patch-based)

$$
(\hat{x}, \hat{\alpha}, \hat{p}) = \underset{(x, \alpha, p)}{\arg \min} ||y - x - \alpha H(p)||^2 + \lambda \phi_{\theta}(x)
$$

• Update:

$$
bt = y - \alpha^{t-1} H(p)
$$

\n
$$
\betat = S_{\lambda} [\beta^{t-1} + C^{\mathsf{T}} (b^t - D\beta^{t-1})]
$$

\n
$$
rt = D\betat
$$

\n
$$
\alphat = \alphat-1 + \rhot H(p)^{\mathsf{T}} (rt - H(p))
$$

• Motivation: Failure case of CNN (self-subtraction)

Figure 14: Rel. Err. on Blank cube

• Global approach (optical model)⁷ Apodized Lyot Coronograph (APLC)

⁷Faustine Cantalloube et al. "Peering through SPHERE Images: A Glance at Contrast Limitations". In: arXiv preprint arXiv:1907.03624 (2019).

• Upsides:

- Leverage the symmetries in the image
- Model the high contrast inherent to direct imaging
- Integration of metadata in the optical model (wind halo, waffle pattern)
- Temporally and spatially varying off-axis PSF

• Potential issues:

- Inversion problem close to phase retrieval, which is notoriously difficult
- The true image formation model is the long exposure PSF, integrated over multiple wavelengths