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Supervised Learning

e Goal: learn a mapping f from an input space X’ to an
output space S given a set of n training samples
{(xi, si) }i=1..n such that (x;,s;) € X x S.

e Parametrized function: the function f can be

parametrized with a set of weights 6 € ©, denoted f.

fp: X— S x

X — 5

e Optimization problem: for a given loss function £

Figure 1: Linear Regression
(MSE, Cross-Entropy, ...):

n

min 2 L(si, fo(xi)) + AQ(6) 1



Deep Learning

e Artifical Neural Networks (ANN): collection of
connected nodes with weights on edges

e Deep Neural Networks (DNN): Several layers of
ANN stacked together

e Weights Update: Gradient descent algorithm:

input layer

hidden layer 1 hidden layer 2

Orr1 =0 — nZVeE(Sn fo(xi)) Figure 2: Deep neural
J network with 3 layers
e Applications: Computer vision, image processing,

natural language processing, speech recognition ..



Deep Learning

e Upsides:
e good performances
e no need for hand-crafted features
e scalable
e fast inference

e Downsides:

e black box (non-interpretable)
e requires a (large) training set with groundtruth labels
e requires dedicated hardware (GPUs, TPUs) for training



Model-based method for inverse problems
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Figure 3: Inverse problem: principle
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Figure 4: Model-based method



Model-based method for inverse problems

From a statistical standpoint, the problem can be described with maximum a
posteriori (MAP):
Xmap = arg max p(x|y)
=] arg max M
x p(y)
= arg max log(p(y|x)) + log(p(x)) — log(p(y))

= arg min —log(p(y|x)) — log(p(x))

=argmin  f(x) + h(x)
X SN~
Forward model Prior



Model-Based Approaches

e Dominating type of algorithm in signal processing
e Hand-designed from domain knowledge

e Do not rely on data to learn the mapping, but data is used to estimate a small
number of parameters

e Explicit model of the relationship between input and output variables

e Examples: Kalman filter, lterative Shrinkage Thresholding Algorithm (ISTA),
Alternating Direction Method of Multipliers (ADMM), etc ..



Model-Based Approaches

e Upsides:

e Interpretability

e Good performances if the model accurate and perfectly known
e Downsides:

e Requires domain knowledge (statistical models, or deterministic rules)
e Rely on some assumptions about the underlying statistics, which do not always hold
(linear system, Gaussian and independant noise, etc..)



Model-Based Deep Learning

Data

{x¢}

Data

{s¢}

e Model-Aided network: specific DNN
architecture tailored for the problem at hand (a) Model-Aided network

e DNN-Aided inference: specific parts of the Data {(s,,x)}
model-based algorithm are augmented with Iterative procedure
deep learning tools :

(b) DNN-Aided inference



Model-Based Deep Learning'

Data-driven Model-based machine learning Model-based
Data {(s,,x,)}) Domain knowledge pys
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Figure 6: lllustration of model-based versus data-driven inference. The red arrows correspond
to computation performed before the particular inference data is received.

'Nir Shlezinger et al. “Model-based deep learning”. In: arXiv preprint arXiv:2012.08405 (2020).




Model-Based Deep Learning

Model-Based Deep Learning

DNN-Aided Inference

Model-Aided Networks
(Section V)

(Section 1V)

Neural

Neural
Structure-

Structure-

Deep Buildin
Unfolding Blocksg Agnostic Oriented Augmentation
Examples: Examples: Examples: Examples: Examples:
LISTA [8] DeepSIC [16] CSGM [10] ViterbiNet [15] ReMIMO [21]
DetNet [18] CausalGAN [64] Plug-and-play Learned factor Neural-
Networks [70] graphs [83] augmented
Kalman [96]

Figure 7: Division of model-based deep learning techniques into categories and sub-categories.



LISTA?

e Sparse Coding Let x € R" the input noisy signal. We try to solve the following
sparse decomposition problem:

o1
min =[x — Do |* + Xl|al|y (1)
a 2

where D = [dy,--- ,dp] € R"™*P is the dictionary, the sparse vector « € R” is the
code, and A is the regularization constant.

2Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”. In: International
Conference on Machine Learning. 2010.
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LISTA

e Iterative Shrinkage Thresholding Algorithm (ISTA)3
ISTA and FISTA [Beck & Teboulle, 2009] : model-based iterative algorithm to

solve problem (1):
alktl) = g, [a<k> 4D (x — Da<k>)} (2)
such that D € R™P, A\ ;n € R and S, the thresholding function defined by:

Vi€ [1,pl, Syla); = sign(ey)max(0, ;] — A) (3)

3Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems” . In: SIAM journal on imaging sciences (2009).
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LISTA

e lterative Shrinkage Thresholding Algorithm (ISTA)
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Figure 8: ISTA for signal denoising on a toy example.
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LISTA
o Learned ISTA (LISTA) X W, @) z
The iterative steps to solve (1) (gradient descent +

soft-thresholding) can be unrolled to a DNN of fixed )
depth K, such that D € R"™P, A e RP, and n € R
become learnable parameters (weights of the network). Figure 9: Unrolled
iterations (original
ol = 5ol + nDT(x B Da(k)) (4) notations)
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LISTA

Reduced number of parameters w.r.t. DNN-based denoiser

Fast inference speed

Interpretable model parameters

Smaller amount of training data needed

Can be trained on non-gaussian noise

Can be extended to 2D of 3D data with image patches
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Deep Unfolded Projected Gradient Descent*

e System model: Symbol detection
x=Hs+w

with x € R” the observation, s € S = {jzl}K the signal to recover, and w € R"
i.i.d Gaussian noise. The channel matrix H € R"™K is known.

e Problem:

§ = argmin ||x — Hs|[?
se{£1}X

The search space becomes too large for large values of K (2K).

*Neev Samuel, Tzvi Diskin, and Ami Wiesel. “Learning to detect”. In: IEEE Transactions on Signal
Processing (2019).
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Deep Unfolded Projected Gradient Descent

e Model-based algorithm: Projected Gradient Descent

. . d||x — Hs|]?
by = Ps (3, -, 2z Hel®
5=354

ds
= Ps (8 neH @ + 1, H Hs, )

e Unfolded DetNet: Projected Gradient Descent

2,=ReLU (Wl‘q ((I+&2~QHTH)3Q,1 —(SLQHT:E) +b1~q)

5, = soft sign (Wy gz + bay)

with trainable parameters
6= {(Wl,qa WQ.m bll.zp bZ\q, (51.117 62.:1)}?:1

¢ Results:
e requires an order of magnitude less iterations (layers), improved runtime

e competitive performances .
7



Deep Unfolded Dictionary Learning

e System model: reconstruct clean signal ;1 € R" disturbed with Poisson noise
from a noisy measurement x € R”, with some a priori knowledge:

(o)
log(pu) = th xs"=Hs
c=1

Figure 10: Convolutional generative model (CGM), s € R" is sparse

e Problem: Poisson noise + CGM
(5. {h.},) = arg{mi}n— log payp (@l = Hs)+A|s||:
s.{h.

= argmin 17 exp (Hs)—axT Hs+\||s||1,
s,{h.}

In this case, the matrix H is not known.

18



Deep Unfolded Dictionary Learning

o Model-based algorithm: Proximal Gradient mapping, 2-steps process
Sqr1="Ts (éq +nHT (@ — exp (qu)))
Figure 11: First step: update of the code s

H’Hl =argmin 17 exp (Hs) — o' Hs,
H

subject to s = §;4.

Figure 12: Second step: update of the dictionary H
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Deep Unfolded Dictionary Learning

e Deep Convolutional Exponential-Family Autoencoder (DCEA): Unrolled

iterations:
Sqrs = T (34 + W (2 — exp (W15,))

Two variants: DCEA-C (W1 = W>) and DCEA-UC (W7 # W>).
e Results:

() Original (b) Noisy peak= 1 (c) DCEA-C (d) DCEA-UC

20



DNN-aided inference




Plug-and-Play Networks for Image Restoration®

e System Model:
x=Hs+w
with x € R™ the observation, s € R"” the signal to recover, and w € R i.i.d
Gaussian noise, and H € RM™*",

e Problem:

§ = arg min — log p(s|x)
8
= arg min — log p(x|s) — logp(s)

1
= arg min 3 |z — Hs|* + ¢(s)

®Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. “Plug-and-play priors for
model based reconstruction”. In: 2013 IEEE Global Conference on Signal and Information Processing.
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Plug-and-Play Networks for Image Restoration

e Model-Based: Alternating Direction Method of Multipliers (ADMM)
The problem can be reformulated as:

§ = argminmin 3 | — Hs|* + o(v)
subject to v = s.
which can be processed with ADMM.
01 = argmin § o~ Hsl[*+ 15— (v, u)I”
011 = argminag(o) + 5o — (5,1 + )|
Ugp1 =g + (Bg41 — V1)
The second step can be replaced by a pre-trained DNN denoiser fy:

Va1 = fo (‘éq+1 + ug; O‘q)

22



Plug-and-Play Networks for Image Restoration

(@ Iterative procedure. Iterative procedure

Sgu = Proxe (0 —tg)

Vgs1 = Proxag(Sq +tq)

Mgt = Sert + g Vory Ugi1 = Squ1 + g Vaur

e Results:

+—CS-UWT

r~CSTV
2N Pre-uwT |
o~ PnP-CNN

NMSE (dB

(] 10 ) 0 © ) © ) ) 0 o
iteration number

Figure 13: Normalized MSE versus iteration for the recovery of cardiac MRI images.
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Image burst super-resolution®

Camera’s ISP (hi-quality jpeg) Joint demosaick+sinle-image SR

Output of Dcraw Proposed method

°Bruno Lecouat, Jean Ponce, and Julien Mairal. “Lucas-kanade reloaded: End-to-end super-resolution
from raw image bursts”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 2370-2379.
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Image burst super-resolution

e Image Formation Model: k low-resolution frames yy, one high-resolution latent

image Xx.

Yk =DBWp x+epfork=1,... K,

LR input image y;c

Ly

U

D

> 2

&

T

[>Z

L
Warped HR image  Resampled HR image

Woy

Latent HR image x

Blurred HR image

Decimated HR image
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Image burst super-resolution

e Objective Function:

1
5\\}’ — Upx|[|” + Ao (x),

Which can be re-written (variable splitting) as:

1
E,(x.2,p) = 5|l Upz|* + 5 |l2—xI + Ao(x),
e Updating latent variables:
7zt zt—l_nt [Uth,l(Upt_le—y)—i—,u(zH—xH)]
Pl P — (3LT35) 3T

x' < arg min %Hzt —x|? + Ao (x)

The last step is replaced by a CNN: x! = fp(z")

26



Conclusion

e The integration of deep learning facilitates inference in complex environments,
where accurately capturing the underlying model may be be infeasible
e Model-based deep learning systems require notably less data in order to learn an

accurate mapping

e M system combining DNNs with model-based inference often provides the ability
to analyze its resulting predictions, yielding interpretability and confidence

which are commonly challenging to obtain with conventional black-box deep
learning.

27



Application to Direct Imaging

e Local approach (patch-based)

(% &,p) = g mi)n ly — x — aH(p)[I> + Aga(x)
X,04,p

e Update:

b' =y — " H(p)

Bf — 5/\[51.’—1 _'_ CT(bt o D/Bt—].)]
rt = Dgt

af =o't + peH(p) T (rF = H(p))

28



Application to Direct Imaging

e Motivation: Failure case of CNN (self-subtraction)

‘‘‘‘‘‘‘

(b) Unrolled Model (c) Rel. Err. vs separation

Figure 14: Rel. Err. on Blank cube
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Application to Direct Imaging

e Global approach (optical model)’ Apodized Lyot Coronograph (APLC)

_Jolo ol

Residual VLT pupil| | Coronagraph
atmospheric apodizer
turbulence

Coronagraph
Lyot stop

I -

"Faustine Cantalloube et al. “Peering through SPHERE Images: A Glance at Contrast Limitations” .
In: arXiv preprint arXiv:1907.03624 (2019).
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Application to Direct Imaging

e Upsides:

Leverage the symmetries in the image

Model the high contrast inherent to direct imaging

Integration of metadata in the optical model (wind halo, waffle pattern)

Temporally and spatially varying off-axis PSF
o Potential issues:

e Inversion problem close to phase retrieval, which is notoriously difficult
e The true image formation model is the long exposure PSF, integrated over
multiple wavelengths

31
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