Focal plane wavefront sensing and correction &

Coherence differential imaging

Johan Mazoyer (LESIA)

Axel Potier (JPL), Zahed Wahhaj (ESO), Raphaël Galicher (LESIA), Pierre Baudoz (LESIA), Gael Chavin (OCA)

Current AO systems

real SPHERE sequence

Atmospheric residues

quasi-static speckles

static speckles

5

(Quasi)-static aberrations

6

Averaging of AO residuals

Goal of focal plane correction high contrast techniques

 Correct for aberrations unseen by the Adaptive Optics (Non common path aberrations) => use the science camera as a sensor to retrieve most aberration in the science channel.

Because your sensing method uses the science detector during observations you can only hope to 29/10/2022 correct for speckles that are varying slower than the typical observations time (a few 10s of seconds)

46 seconds integration

real SPHERE sequence

Goal of focal plane correction high contrast techniques

- Correct for aberrations unseen by the Adaptive Optics (Non common path aberrations) => use the science camera as a sensor to retrieve most aberrations in the science channel.
- Dig a "dark hole" : a region in the focal plane with a higher contrast. Can be as large at the correction zone of SPHERE DMs, or can be smaller if we want to locally increase contraste

Correct for

- Static aberrations (can be done before science sequence)
- Quasi static aberrations things that varies at the same time scale as the science images exposure time (a few 10s of seconds), during the science sequence
- All aberrations faster than the science image exposure time and uncorrected by the AO cannot be corrected

Image creation

brings that part to ~0

Image creation

Waffles

Random ϕ_{up} and cosinus ripple ϕ_{DM} in pupil plane

Stellar intensity in coronagraph focal plane $I_{D,S}$

Dark hole shape

Electrical Field conjugation

Contrast improvment

Raw image

4 iterations

For the moment each iteration is ~4 probes of 1 minute. Can be reduces (less probes and faster)

Contrast improvment

Raw image

After high pass-filter

Contrast improvment

After high pass-filter

Electrical Field conjugation

COFFEE / MEDUSAE

-0.26 -0.14 -0.017 0.22 0.34 0.46 -0.38 0.1

Coherent Differential imaging

Coherent Differential imaging

Reference image

CDI result

MALLAN LAND

Total Intensity

Planet or disks are not impacted !

22

Phase and amplitude aberrations

Phase : temporal delay between part of the aperture

Amplitude : local difference in the transmission

Field = exp(a) * P

Field = $exp(i \phi) * P$

Phase and amplitude Field = $E \exp(a + i \phi) = E \exp(\phi_c)$

Dark hole shape

