

Optimal multi-epoch combination of direct imaging observations for exoplanet detection

J. Dallant¹, M. Langlois¹, É. Thiébaut¹, O. Flasseur²

¹CRAL, UMR 5574, CNRS, Université de Lyon, Saint-Genis-Laval, France ²LESIA, Université de Paris, Meudon, France

COBREX week 2022

Outline

1 Introduction

- 2 The PACOME algorithm Mathematical formalism Principle of the algorithm
- 3 Results on injected sources
- 4 Application to HR 8799

1 Introduction

- The PACOME algorithm Mathematical formalism Principle of the algorithm
- 8 Results on injected sources
- 4 Application to HR 8799

Introduction

Context

- direct imaging exoplanets detection \rightarrow very challenging
 - very high star/companion contrast (10^4 to 10^8)
 - strong spatial & spectral correlations, stellar leakages + photon noise
- combining several observations \rightarrow boost the exoplanet detection sensitivity

- cutting-edge ADI source detection algorithm
- learns the statistical model of the background from the data (in small local patches)
- achieves excellent detection performances
- sometimes not enough (for extremely faint signals)

The new approach

New PACO-based source detection method that optimally combines multi-epoch observations (assuming source's Keplerian motion)

- \rightarrow The PACOME algorithm (PACO Multi-Epoch)
 - detects exoplanets (with improved sensitivity)
 - estimates simultaneously their orbital elements
 - benefits from PACO's excellent sensitivity

(Dallant et al. in prep)

Introduction

- 2 The PACOME algorithm Mathematical formalism Principle of the algorithm
- 8 Results on injected sources
- 4 Application to HR 8799

Introduction

2 The PACOME algorithm Mathematical formalism Principle of the algorithm

8 Results on injected sources

4 Application to HR 8799

The PACOME algorithm Mathematical formalism

Data $\mathbf{r}_{t,\ell,k}$ at time t, spectral channel ℓ and frame k:

$$\{\mathbf{r}_{t,\ell,k}\}_{k=1:K}$$

Nuisance term (stellar leakages & noise):

- considered Gaussian $\sim \mathcal{N}(m{m{f}}_{t,\ell}, m{\Sigma}_{t,\ell})$
- independent of the epoch of observation t and frame k

Total log-likelihood of the data given our model:

$$\mathcal{L}_{\ell}(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \mathsf{cste} - \frac{1}{2} \sum_{t,k} \left\| \boldsymbol{r}_{t,\ell,k} - \alpha_{t,\ell} \, \boldsymbol{h}_{t,\ell,k}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) - \bar{\boldsymbol{f}}_{t,\ell} \right\|_{\boldsymbol{\Sigma}_{t,\ell}^{-1}}^2$$
$$= \mathsf{cste} + \sum_t \left[\alpha_{t,\ell} \, \boldsymbol{b}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) - \frac{1}{2} \, \alpha_{t,\ell}^2 \, \boldsymbol{a}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) \right]$$

The PACOME algorithm Mathematical formalism

 $a_{t,\ell}$ and $b_{t,\ell}$ are pre-calculated by the PACO algorithm as:

$$\begin{aligned} \mathbf{a}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) &= \sum_k \mathbf{h}_{t,\ell,k}(\boldsymbol{\theta}_t(\boldsymbol{\mu}))^{\mathsf{T}} \boldsymbol{\Sigma}_{t,\ell}^{-1} h_{t,\ell,k}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) \\ \mathbf{b}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) &= \sum_k \mathbf{h}_{t,\ell,k}(\boldsymbol{\theta}_t(\boldsymbol{\mu}))^{\mathsf{T}} \boldsymbol{\Sigma}_{t,\ell}^{-1} \left(\mathbf{r}_{t,\ell,k} - \bar{\mathbf{f}}_{t,\ell} \right) \end{aligned}$$

Deriving $\mathcal{L}_\ell(lpha, \mu) o$ source flux estimator for each epoch

$$\widehat{\alpha}_{t,\ell} = \operatorname*{arg\,max}_{\alpha_{t,\ell} \geq 0} \mathcal{L}_{\ell}(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{\left[\boldsymbol{b}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu})) \right]_+}{\boldsymbol{a}_{t,\ell}(\boldsymbol{\theta}_t(\boldsymbol{\mu}))}$$

Injecting $\widehat{\alpha}_{t,\ell}$ in $\mathcal{L}_\ell(\pmb{\alpha},\pmb{\mu})$ and re-deriving \rightarrow orbital elements estimator

$$\widehat{\mu}_{\ell} = \arg\max_{\mu} \sum_{t} \frac{\left[\frac{b_{t,\ell}(\theta_{t}(\mu))\right]_{+}^{2}}{a_{t,\ell}(\theta_{t}(\mu))}$$
$$\mathcal{C}_{\ell}(\mu) = \sum_{t} \frac{\left[\frac{b_{t,\ell}(\theta_{t}(\mu))\right]_{+}^{2}}{a_{t,\ell}(\theta_{t}(\mu))} \iff \mathsf{SNR}_{\ell}(\mu) = \sqrt{\sum_{t} \frac{\left[\frac{b_{t,\ell}(\theta_{t}(\mu))\right]_{+}^{2}}{a_{t,\ell}(\theta_{t}(\mu))}}$$

- -

The PACOME algorithm Statistical guarantees

- Theoretical distribution of the criterion $\mathcal{C}_\ell\equiv \sum$ (rectified Normal distrib.)^2
- · Possible to assess the statistical relevance of multi-epoch detection

PDF of the criterion given different degrees of freedom M.

Empirical quantile upper bound for different degrees of freedom M and confidence levels $1 - \rho$.

Introduction

2 The PACOME algorithm Mathematical formalism Principle of the algorithm

8 Results on injected sources

4 Application to HR 8799

The PACOME algorithm Schematic diagram

Inputs

The algorithm is coded in Julia (Bezanson et al. 2017).

Introduction

- The PACOME algorithm Mathematical formalism Principle of the algorithm
- 3 Results on injected sources
- Application to HR 8799

Results on injected sources Fake orbits injections

Injections of 4 sources at $9 \neq$ epochs

Data	ADI		
Instru.	SPHERE/IRDIS		
	(Beuzit et al. 2019)		
Ref.	HR 8799 @ 2016-11-18		
Band	DB H23		
N _{sources}	4		
N_{epochs}	9		
$t_{exp-time}$	$\sim 5 { m h}$		

Injection data

Injected fluxes $< 5\sigma$ limit on average

Source	SNR _{t,ℓ}	$\overline{lpha}_{t,\ell}$
b	4.6	$1.8 imes10^{-6}$
с	2.5	$1.7 imes10^{-6}$
d	2.4	$2.9 imes10^{-6}$
е	2.17	$8.8 imes10^{-6}$

Average injected SNR & flux per epoch

Search strategy: Find Brighter, Mask & Restart

Interp.	Catmull-Rom
l	1 (H2)
$N_{\rm orb}$	\sim 42 \times 10 ⁹ (\times 4)
$N_{\rm threads}$	12
t_{exec}	11h×4 (CPU)

Settings of the PACOME run

Results on injected sources Optimal orbits found with PACOME

All optimal orbits $\widehat{\mu}$:

- < 1 pix from the injected orbits (RMSD)
- $\mathcal{C} > 1 10^{-6}$ confidence level

		$\widehat{oldsymbol{\mu}}_{b}$	$\widehat{oldsymbol{\mu}}_{c}$	$\widehat{oldsymbol{\mu}}_d$	$\widehat{oldsymbol{\mu}}_{e}$
SNR _t	-	4.63	2.49	2.40	2.20
\mathcal{C}	-	222.67	59.53	57.49	47.75
SNR	-	14.92	7.72	7.58	6.91
RMSD	pix	0.40	0.53	0.69	0.24
$\widehat{\mathcal{Q}}_{\mathcal{C}}(1-10^{-6})$ 37.13 \pm 0.25					

Optimal solution $\widehat{\mu}$ found for each planet

Projections of the injected orbits and PACOME solutions

Distance (per epoch) between the injections and the best solutions found by PACOME

Results on injected sources Maps of the criterion

Cost function map around the best solutions (9 epochs combined) :

 \rightarrow We detect planets that were not detectable on any individual epoch

Introduction

- The PACOME algorithm Mathematical formalism Principle of the algorithm
- 8 Results on injected sources
- 4 Application to HR 8799

Results on the HR 8799 system Setup of the PACOME run

Aim: Find all 4 known planets in one large blind search covering all the field

The HR 8799 system (2017-06-14)

Interp.	Lanczos		
l	1		
Norb	$\sim 21 imes 10^9$		
$N_{\rm threads}$	12		
t exec	11h (CPU)		

Settings of the run

Data	ADI			
Instru.	SPHERE/IRDIS			
Bands	H23, K12, BB J, BB H			
N _{epochs}	23			
t _{exp-time}	~ 37 h			

HR 8799 data

Best on-grid solution \rightarrow **Planet b**

Results on the HR 8799 system Unravelling all four exoplanets

Cost function of all explored orbits vs. their RMS distance to the stellar center

Adding constraints of:

- coplanarity (i, Ω)
- near 1:2:4:8 resonance*
- same stellar mass $(K)^{\star\star}$

*Gozdziewski et Migaszewski 2020 **Sepulveda et Bowler 2022

Optimal orbits of each peak & the next 1000 best orbits with inclination $20^{\circ} < i < 30^{\circ}$ (agree with literature (Zurlo et al. 2016, Wang et al. 2018))

 \rightarrow We keep the quadruplet of orbits maximising C and satisfying the constraints (-)

Results on the HR 8799 system

Maps of the criterion

	$\widehat{oldsymbol{\mu}}_b$	$\widehat{oldsymbol{\mu}}_{oldsymbol{c}}$	$\widehat{oldsymbol{\mu}}_d$	$\widehat{oldsymbol{\mu}}_{e}$
\mathcal{C}	$14.4 imes10^4$	$8.4 imes10^4$	$5.5 imes10^4$	$2.6 imes10^4$
SNR	379.5	289.8	234.5	161.2
$\widehat{\mathcal{Q}}_{\mathcal{C}}(1-10^{-6})$	53.5 ± 0.3			

 $\ensuremath{\mathcal{C}}$ values of the optimal solutions found with <code>PACOME</code>

Cost function map around the best solutions:

Introduction

- The PACOME algorithm Mathematical formalism Principle of the algorithm
- 8 Results on injected sources
- 4 Application to HR 8799

Conclusion

The algorithm...

- combines multi-epoch direct-imaging observations
- increases the detection sensitivity of keplerian sources ($\sim \sqrt{N_{\rm epochs}})$
- estimates simultaneously their orbital elements (best scheduling of future obs.)
- is optimal in the maximum likelihood sense
- is very fast

Future prospects

Enhancing the algorithm

- smarter sampling strategy (on-search grid refinement)
- data pre-processing & data flux calibration (waffles)

Switching to IRDIS/ASDI and IFS data

- account for the spectral correlations and improve the detection further

Applying PACOME on other systems

- Re-exploring HR 8799 to search for a 5th planet (Wahhaj et al. 2021)
- Exploring HD 95086 & β Pictoris

Questions ? ©