Post-processing algorithms for exoplanet detection and characterization at high contrast by angular (and spectral) differential imaging A focus on data-driven approaches

Olivier Flasseur

1 / 27

- **Faint signal from the exoplanets**
- **Non-stationary** and **spatially correlated** strong background \bullet

- **Faint signal** from the exoplanets
- **Non-stationary** and **spatially correlated** strong background
- **Strong fluctuations** (stellar leakages) \bullet

- **Faint signal from the exoplanets**
- **Non-stationary** and **spatially correlated** strong background \bullet
- **Strong fluctuations** (stellar leakages) \bullet

Peculiarities

- **Faint signal from the exoplanets**
- **Non-stationary** and **spatially correlated** strong background
- **Strong fluctuations** (stellar leakages) \bullet
- **Multi-spectral** data available

⇒ **Signal processing is mandatory** ⇐

angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Peculiarities

- **Faint signal** from the exoplanets
- **Non-stationary** and **spatially correlated** strong background \bullet
- **Strong fluctuations** (stellar leakages)
- **Multi-spectral** data available

⇒ **Signal processing is mandatory** ⇐

State-of-the-art processing methods: summary

Existing methods

- **Subtraction - Decomposition**: KLIP [Soummer et al., 2012]; TLOCI [Lafrénière et al., 2014]
- **Statistics**: MOODS [Smith et al., 2009]; ANDROMEDA [Cantalloube et al., 2016]; PACO \bullet
- \bullet **Learning**: S4 [Fergus et al., 2014] SODINN [Gonzalez et al., 2017], CNN [Yip et al., 2020]
- **Temporal**: RSM [Dahlqvist et al., 2020], TRAP [Samland et al., 2021] \bullet
- **Physics**: PeX [Devanay et al., 2017], MEDUSAE [Cantalloube et al., 2018]

Main challenges

- dealing with the **high contrat**, **high-resolution**,
- accounting for the **non-stationarities** of the background,
- **0** being **robust** against large **fluctuations & outliers**.

Subtraction-based: general principle

Subtraction: cADI [Marois+, 2006]; KLIP/PCA [Soummer+, 2012]; TLOCI [Lafrénière+, 2014] and many variants...

 $+$ possibility to add a forward model of planet signature (KLIP-FM: [Pueyo+, 2016], FMMF: [Ruffio+, 2017])

⇒ **Used routinely in direct imaging...**

but limited sensibility & no control false alarm / detection probabilities 27

Subtraction-based \Rightarrow decomposition-based: LLSG

local data decomposition: low rank + sparse + gaussian

Model of the observations: $M = L + S + N$

Gomez Gonzalez et al., 2016]

⇒ **explicit unmixing of the planet signal** 6= **PCA, (T)LOCI**

Inverse problem formulation:

 \Rightarrow $\{\hat{\mathbf{L}}, \hat{\mathbf{S}}\}$ = arg min_{**L**, **S** $\frac{1}{2}$ ||M − **L** − **S**|| $\frac{2}{2}$ s.t. rank(**L**) $\leq r$, $||\mathbf{S}||_0 \leq s$} $\Rightarrow \{\widehat{\mathbf{L}}, \widehat{\mathbf{S}}\} = \text{arg min}_{\mathbf{L}, \mathbf{S}} \frac{1}{2} ||\mathbf{M} - \mathbf{L} - \mathbf{S}||_2^2 \quad \text{s.t.} \quad ||\mathbf{L}||_* \le \tau_*, ||\mathbf{S}||_1 \le \tau_1$

Alternate low-rank plus sparse separation:

$$
\begin{aligned} \widehat{\mathbf{L}}_i &= \arg\min_{\mathbf{L}} ||\mathbf{M} - \mathbf{L} - \widehat{\mathbf{S}}_{i-1}||_F^2 \quad \text{s.t.} \quad \text{rank}(\mathbf{L}) \le r \\ \widehat{\mathbf{S}}_i &= \arg\min_{\mathbf{S}} ||\mathbf{M} - \widehat{\mathbf{L}}_i - \widehat{\mathbf{S}}||_F^2 \quad \text{s.t.} \quad ||\mathbf{L}||_0 \le s \end{aligned}
$$

• Subproblems \simeq solved with a greedy approach of truncated SVD: $\widehat{\mathbf{L}}_i = \mathscr{H}_k^{\textsf{SVD}}(\mathbf{M} - \widehat{\mathbf{S}}_{i-1})$ and $\widehat{\mathbf{S}}_i = \mathscr{S}_\lambda(\mathbf{M} - \widehat{\mathbf{L}}_i)$ 3/27

An approach to combine residuals from \neq algorithms

Regime Switching Model: state of a system / a time series target model: no planet/planet ; background model: Gauss/Lap.

Set of linear equations describing the RSM model:

$$
\mathbf{X}_{i_a} = \mu + \beta R_{i_a} \mathbf{P} + \epsilon_{s,i_a} = \begin{cases} \mu + \epsilon_{0,i_a} & \text{if } S_{i_a} = 0\\ \mu + \beta \mathbf{P} + \epsilon_{1,i_a} & \text{if } S_{i_a} = 1 \end{cases}
$$

• Probability ξ_{s,i_a} of X_{i_a} being in a state $S_{i_a} = s$ at step i_a is: $\xi_{s,i_a} = \mathsf{P}(S_{i_a} | \{\mathbf{X}_{i_a}, \mathbf{X}_{i_a-1}\}, \mathbf{P}, \mu, \beta, \sigma) = \sum^{1}$ *q*=0 *ηs,ia pq,sξq,ia*−¹ $\sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{s',i} p_{q',s'} \xi_{q',i} = 1$ $q' = 0$ $s'=0$

- **Iterative inference algorithm to** estimate the model parameters
- **•** The probabibility of being in a state depends on the previous state and on the transition probability (preset)

SNR*t***:** *t***-test based on small sample statistics** (Mawet+, 2014) versus **STIM: Standardized Trajectory Intensity Mean** (Pairet+, 2019)

The absence of explicit computation of SNR map for approaches based on image subtraction/decomposition remains a problem **5 / 27** **Statistics-based**: MOODS [Smith+, 2009]; ANDROMEDA [Cantalloube+, 2016]

ANDROMEDA general principle:

Statistics-based: PACO, robust PACO, PACO ASDI [Flasseur+, 2018, 2019, 2020] **PACO general principle:**

PACO (**PA**tch **CO**variances): local learning of the background covariances

PACO principle

- Accounts for background fluctuations
- Local modeling: \simeq 50 pixels/patch ⇒ **Local adaptivity**
- **Detection**: binary hypothesis test
- **Characterization**: max. likelihood
	- Unbiased astrometry
	- Unbiased photometry

⇒ **Local adaptivity**

• Unbiased astrometry • Unbiased photometry

PACO: data-driven exoplanet detection & characterization

PACO (**PA**tch **CO**variances): local learning of the background covariances

⇒ **Local adaptivity Detection**: binary hypothesis test **Characterization**: max. likelihood

> • Unbiased astrometry • Unbiased photometry

PACO: data-driven exoplanet detection & characterization

PACO (**PA**tch **CO**variances): local learning of the background covariances

 \bullet \bullet ⇒ **Local adaptivity**

• Unbiased astrometry Unbiased photometry

PACO: data-driven exoplanet detection & characterization

PACO (**PA**tch **CO**variances): local learning of the background covariances

 \bullet \bullet ⇒ **Local adaptivity**

• Unbiased astrometry • Unbiased photometry

PACO: data-driven exoplanet detection & characterization

PACO (**PA**tch **CO**variances): local learning of the background covariances

PACO (**PA**tch **CO**variances): local learning of the background covariances

PACO (**PA**tch **CO**variances): local learning of the background covariances

PACO (**PA**tch **CO**variances): local learning of the background covariances

[Introduction](#page-1-0) [Subtraction/Decomposition](#page-14-0) [Statistics](#page-18-0) [Learning](#page-41-0) [Temporal](#page-49-0) [Conclusions](#page-53-0) PACO: modeling the fluctuations of the nuisance component Statistical model Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel *n* and time *t*: $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$

$$
\mathsf{p}_{f}(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^{T} \mathcal{N}\left(f_{n,t} \mid \mathbf{m}_{n}, \boxed{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_{n}\right) \text{ where } n = \lfloor \phi_{t} \rceil
$$

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel *n* and time *t*: $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(0, \mathbf{C}_n)$ ${\sf p}_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}\left(f_{n,t} \, \Big| \, \bm{m}_n, \Big[\overline{\{\sigma_{n,t'}\}_{t'=1:T}}\Big|, \mathbf{C}_n\right)$ where $n = \lfloor \phi_t \rceil$

Statistical learning

Estimated through **fixed-point iterations**:

• Scaling factor:
$$
\boxed{\widehat{\sigma}_{n,t}^2} = (1/K) (r_{n,t} - m_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - m_{n,t})^{\text{t}}.
$$

\n- Sample mean:
$$
\hat{m}_n = \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \right] r_{n,t} \right) / \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \right] \right).
$$
\n- Sample cov.: $\hat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \left[(r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^t \right].$
\n

● Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\hat{\mathbf{C}}_n = (1 - \hat{\rho}_n)\hat{\mathbf{S}}_n + \hat{\rho}_n\hat{\mathbf{F}}_n$.

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel *n* and time *t*: $f_{n,t} = m_n + \sqrt{a_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(0, \mathbf{C}_n)$ $\mathsf{p}_f(\{\pmb{f}_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathscr{N}\big(\pmb{f}_{n,t} \ \big\vert \ \pmb{m}_n, \overline{\big\{\sigma_{n,t'}\}_{t'=1:T}\big\}}, \mathbf{C}_n \big\}$ where $n = \lfloor \phi_t \rceil$ *t*=1

Statistical learning

Estimated through **fixed-point iterations**:

• Scaling factor:
$$
\boxed{\widehat{\sigma}_{n,t}^2} = (1/K) (r_{n,t} - m_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - m_{n,t})^t.
$$

$$
\bullet \quad \text{Sample mean: } \widehat{m}_n = \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} \middle| r_{n,t} \right) / \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} \right).
$$

• Sample cov.:
$$
\hat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left| \frac{1}{\sigma_{n,t}^2} \left| (r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^{\text{t}} \right. \right|
$$

● Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\hat{\mathbf{C}}_n = (1 - \hat{\rho}_n)\hat{\mathbf{S}}_n + \hat{\rho}_n\hat{\mathbf{F}}_n$.

PACO: *shrinkage* estimation of covariances

Issue and proposed approach

 \bullet Limited number of samples $(T \approx K)$ to estimate \mathbf{C}_n $(K \times K)$ \Rightarrow $\widehat{\mathbf{C}}_n$ is very noisy and rank deficient.

A form of **regularization** has to be enforced.

Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010] ⇒ **A bias/variance tradeoff: automatic and locally adaptive.**

PACO: shrinkage estimation of covariances

Issue and proposed approach

• Limited number of samples $(T \approx K)$ to estimate C_n $(K \times K)$ \Rightarrow \widehat{C}_n is very noisy and rank deficient.

A form of **regularization** has to be enforced.

• Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010] ⇒ **A bias/variance tradeoff: automatic and locally adaptive.**

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel *n* and time *t*: $f_{n,t} = m_n + \sqrt{a_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(0, \mathbf{C}_n)$ $p_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}\left(f_{n,t} \mid m_n, \boxed{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_n\right)$ where $n = \lfloor \phi_t \rceil$

Statistical learning

Estimated through **fixed-point iterations**:

• Scaling factor:
$$
\boxed{\widehat{\sigma}_{n,t}^2} = (1/K) (r_{n,t} - m_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - m_{n,t})^{\mathrm{t}}.
$$

• Sample mean:
$$
\widehat{\boldsymbol{m}}_n = \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} \boldsymbol{r}_{n,t} \right) / \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} \right).
$$

• Sample cov.:
$$
\hat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \left[(r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^{\text{t}} \right] \right]
$$

● Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\widehat{C}_n = (1 - \widehat{\rho}_n)\widehat{S}_n + \widehat{\rho}_n\widehat{F}_n$.

Weighting maps $1/\widehat{\sigma}^2$

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel *n* and time *t*: $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$ ${\sf p}_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}\left(f_{n,t} \, \Big| \, \bm{m}_n, \Big[\overline{\{\sigma_{n,t'}\}_{t'=1:T}}\Big|, \mathbf{C}_n\right)$ where $n = \lfloor \phi_t \rceil$

Statistical learning

Estimated through **fixed-point iterations**:

• Scaling factor:
$$
\widehat{\sigma}_{n,t}^2 = (1/K) (r_{n,t} - m_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - m_{n,t})^t.
$$

\n- Sample mean:
$$
\hat{m}_n = \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \right] r_{n,t} \right) / \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \right] \right).
$$
\n- Sample cov.: $\hat{S}_n = \frac{1}{T} \sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} \left[(r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^t \right] \right].$
\n

● Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\hat{\mathbf{C}}_n = (1 - \hat{\rho}_n)\hat{\mathbf{S}}_n + \hat{\rho}_n\hat{\mathbf{F}}_n$.

⇒ **Is this model relevant?**

S/N follows $\mathcal{N}(0, 1)$ if no source \Rightarrow controlled PFA or FDR

[Introduction](#page-1-0) [Subtraction/Decomposition](#page-14-0) [Statistics](#page-18-0) [Learning](#page-41-0) [Temporal](#page-49-0) [Conclusions](#page-53-0)

S4: a discriminative model based on SVM

local Spatial-Spectral model for Speckle Suppression (Fergus+, 2014)

data representation:

- exploiting radial motion of speckles wrt. wavelength
- patches in polar coordinates (samples: angles \times exposures)
- **model**:
	- discriminative: SVM-based, $+$ combined with injections
- **learning & testing**
	- \bullet separating slices within annulus into train/test
	- **•** train new model for each location

- **generating labeled data**: injections of fake faint sources
	- applying a truncated SVD for various ranks *k*
	- forming the labeled groundtruths with the residual patches
- **training step:** a (deep) discriminative model
	- a random forest classifier or a CNN
- **testing step:** testing each location of the FOV

[Gomez Gonzalez et al., 2017]

Initial approach: SODINN/SODIRF (Gonzalez+ 2017). Improvements in progress (Cantero+ in prep.) **16 / 27**

deep PACO: a discriminative model based on stats & CNN

deep PACO: a discriminative model based on stats & CNN

Example of ROCs curves (HIP 88399, 2015-05-10)

(Flasseur, Bodrito+, 2022) **19 / 27**

deep PACO: a discriminative model based on stats & CNN

Example of contrast curves (HIP 88399, 2015-05-10)

Example of photometric errors (HIP 88399, 2015-05-10)

(Flasseur, Bodrito+, 2022) **21 / 27**

A generative and discriminative approach

- **generating labeled data**: a deep generative model
	- training a GAN to produce "pure speckles" (prominent component)
	- injecting fake faint sources into the generated examples
- **training step**: a deep discriminative model
	- training a CNN based on the generated examples
- **testing step**: testing from an complete image directly

GAN for modelling the nuisance component CNN for supervised exoplanet detection

Temporal-based: general principle

⇒ **Different paradigm: samples are temporal not spatial**

HSR: a temporal approach exploiting metadata

A temporal approach = denoise a time series based on predictors

- **choice of the predictors**: similar pure background time series
	- excluding the predicted trajectory
	- encompassing the close $+$ opposite $+$ annular areas
	- exploiting metadata containing information about the systematics
- **model**: ridge regression
	- excluding the time samples affected by a putative exoplanet
- **decision**: (for a single location)
	- forming the residuals "current time series prediction"
	- checking for signal bump at all time \rightarrow candidates
	- applying a consistent test for each candidate

TRAP: a closely related approach based on inverse problem

A temporal approach = denoise a time series based on predictors

- **choice of the predictors**: \simeq same criteria
	- same collections for all set of tested pixels (no masking)
- **model**: causal regression model
	- dimensionality reduction: truncated SVD on the set of predictors
	- \bullet simultaneous fit of the transiting planet $+$ speckles patterns
- **decision**:
	- \bullet linear system solved analytically (flux $+$ variance)
	- heuristic to find the exoplanet flux (weighted mean)
	- computation of SNR map

Wavelet-based denoising as a pre-conditionner

A temporal approach: frequencies of speckles variations + time dependence

multi-level/resolution analysis (time/frequency)

- applying a wavelet transform to each (derotated) time series
- denoising by soft-thresholding (MAD on the 1st wavelet layer)
- applying inverse transform \rightarrow preconditioned data
- applying a space-based detection algorithm

Different classes of post-processing algorithms for exoplanet detection and characterization:

- \bullet subtraction / decomposition-based
- statistics-based
- learning-based \bullet
- temporal-based \bullet

Statistics & temporal approaches

currently best tradeoff between sensitivity and confidence

Learning-based approaches

- very interesting detection sensitivity...
- ...but stay "black-box approaches"

 \Rightarrow see brainstorming sessions this afternoon about control of the uncertainties, model-based approaches, and integration of the metadata.

References (1/2)

Subtraction-based:

- R. Soummer et al., "Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages", The Astrophysical Journal Letters, 755(2), L28, 2012. [KLIP]
- A. Amara et al., "PYNPOINT: an image processing package for finding exoplanets", Monthly Notices of the Royal Astronomical Society, 427(2), 2012. [KLIP]
- D. Lafrénière et al., "A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging", The Astrophysical Journal, 660(1), 2007. [LOCI]
- C. Marois et al., "Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline", In Adaptive Optics Systems II, SPIE, 7736, 2010. *ILOCII*
- C. Marois et al., "TLOCI: A fully loaded speckle killing machine", In proceedings of the International Astronomical Union, 8(S299), 2013. [TLOCI]
- C. Marois et al., "GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging", In Adaptive Optics Systems IV, SPIE, 9148, 2014. [TLOCI]
- L. Puevo et al., "Detection and characterization of exoplanets using projections on karhunen–loeve eigenimages: Forward modeling", The Astrophysical Journal, 824(2), 2016. [KLIP-FM]
- J.-B. Ruffio et al., "Improving and assessing planet sensitivity of the GPI exoplanet survey with a forward model matched filter", The Astrophysical Journal, 842(1), 2017. [FMMF]
- B. Pairet et al., "STIM map: detection map for exoplanets imaging beyond asymptotic Gaussian residual speckle noise", Monthly Notices of the Royal Astronomical Society, 487(2), 2019. [STIM]

Decomposition-based:

- C. G. Gonzalez et al., "Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences - The LLSG algorithm", Astronomy & Astrophysics, 589, A54, 2016. [LLSG]
- B. Ren et al., "Non-negative matrix factorization: robust extraction of extended structures", The Astrophysical Journal, 852(2), 104, 2018. [NMF]

Statistics-based:

- I. Smith et al., "Detection of a moving source in speckle noise. Application to exoplanet detection", IEEE Transactions on Signal Processing, 57(3), 2009. [MOODS]
- F. Cantalloube et al., "Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data", Astronomy & Astrophysics, 582, A89, 2015. [ANDROMEDA]
- O. Flasseur et al., "Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances-The PACO algorithm", Astronomy & Astrophysics, 618, A138, 2018. [PACO]
- O. Flasseur et al., "Robustness to bad frames in angular differential imaging: a local weighting approach", Astronomy & Astrophysics, 634, A2, 2019. [robust PACO]

Statistics-based:

- O. Flasseur et al., "PACO ASDI: an algorithm for exoplanet detection and characterization in direct imaging with integral field spectrographs", Astronomy & Astrophysics, 637, A9, 2020. [PACO ASDI]
- F. Cantalloube et al., "Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data", Astronomy & Astrophysics, 582, A89, 2015. [ANDROMEDA]

Leaning-based:

- R. Fergus et al., "S4: A Spatial-spectral model for Speckle Suppression. The Astrophysical Journal, 794(2), 161, 2014. [S4]
- C. G. Gonzalez et al., "Supervised detection of exoplanets in high-contrast imaging sequences", Astronomy & Astrophysics, 613, A71, 2018. [SODIRE, SODINNI]
- K. H. Yip et al., "Pushing the limits of exoplanet discovery via direct imaging with deep learning", In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2019. **[CNN]**
- T. D. Gebhard et al., "Physically constrained causal noise models for high-contrast imaging of exoplanets", arXiv:2010.05591, 2021. [HSR]
- T. D. Gebhard et al., "Half-sibling regression meets exoplanet imaging: PSF modeling and subtraction using a flexible, domain knowledge-driven, causal framework", A&A, 666, A9, 2022'. [HSR]
- O. Flasseur et al., "Exoplanet detection in angular differential imaging: combining a statistics-based learning with a deep-based learning for improved detections", SPIE Adaptive Optics Systems, 12185, 2022. [deep PACO]

Temporal-based:

- M. Samland et al., "TRAP: A temporal systematics model for improved direct detection of exoplanets at small angular separations", Astronomy & Astrophysics, 646, A24, 2021. [TRAP]
- M. J. Bonse et al., "Wavelet based speckle suppression for exoplanet imaging-Application of a de-noising technique in the time domain", arXiv:1804.05063, 2018. [wavelet]
- C. H. Dahlqvist et al., "Regime-switching model detection map for direct exoplanet detection in ADI sequences", Astronomy & Astrophysics, 633, A95, 2020, *IRSMI*

Physics-based:

- N. Devaney et al., "PeX 1. Multispectral expansion of residual speckles for planet detection", Monthly Notices of the Royal Astronomical Society, 472(3), 2017. [PeX]
- F. Cantalloube et al., "Status of the MEDUSAE post-processing method to detect circumstellar objects in high-contrast multispectral images", arXiv:1812.04312, 2018. [MEDUSAE]

⇒ **Different paradigm: samples are spectral not spatial/temporal**

- **constructing basis of components with reference R**: $\{\widehat{\mathbf{W}},\widehat{\mathbf{H}}\} = \mathsf{arg\ min}_{\mathbf{W},\mathbf{H}}\frac{1}{2}$ $\frac{1}{2}$ | $|\mathbf{R} - \mathbf{WH}||^2_F$ s.t. rank $(\mathbf{WH}) <$ rank (\mathbf{R}) $\widehat{\mathbf{W}}^{(k+1)} = \widehat{\mathbf{W}}^{(k)}. \ast \left[{\mathbf{R}\widehat{\mathbf{H}}^{(k)}}^{\mathrm{t}}\right]$./ $\left[\widehat{\mathbf{W}}^{(k)}\widehat{\mathbf{H}}^{(k)}\widehat{\mathbf{H}}^{(k)}^{\mathrm{t}}\right]$ $\widehat{\mathbf{H}}^{(k+1)} = \widehat{\mathbf{H}}^{(k)}.\ast\left[\widehat{\mathbf{W}}^{(k)^{\text{t}}}\mathbf{R}\right]./\left[\widehat{\mathbf{W}}^{(k)^{\text{t}}}\widehat{\mathbf{W}}^{(k)}\widehat{\mathbf{H}}^{(k)}\right]$
	- \bullet modeling any target M with the component basis \overline{H} : $\int \sinh \hat{w} \cdot d\hat{w}^{(k+1)} = \hat{w}^{(k)} \cdot * \left[\mathbf{M} \hat{\mathbf{H}}^{\text{t}} \right] \cdot / \left[\hat{w}^{(k)} \hat{\mathbf{H}} \hat{\mathbf{H}}^{\text{t}} \right]$ projection: $M_{NME} = \hat{w}\hat{H}$
	- NMF \neq **KLIP, LLSG**:

NMF does not remove the mean of every image $+$ entries non-negative \Rightarrow non-orthogonal component basis

projection is iterative

⇒ finding a non-neg combination of components to model **M**