Post-processing algorithms for exoplanet detection and characterization at high contrast by angular (and spectral) differential imaging *A focus on data-driven approaches*

Olivier Flasseur

Peculiarities

Peculiarities

Peculiarities

Peculiarities

Peculiarities

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong background

Multi-spectral data available

Signal processing is mandatory

- Peculiarities
 - Faint signal from the exoplanets
 - Non-stationary and spatially correlated strong background
 - Strong fluctuations (stellar leakages)

ignal processing is mandatory

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong background
- Strong fluctuations (stellar leakages)

ignal processing is mandatory

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong background
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

 \Rightarrow Signal processing is mandatory \Leftarrow

angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Peculiarities

- Faint signal from the exoplanets
- Non-stationary and spatially correlated strong background
- Strong fluctuations (stellar leakages)
- Multi-spectral data available

 \Rightarrow Signal processing is mandatory \Leftarrow

State-of-the-art processing methods: *summary*

Existing methods

- Subtraction Decomposition: KLIP [Soummer et al., 2012]; TLOCI [Lafrénière et al., 2014]
- Statistics: MOODS [Smith et al., 2009]; ANDROMEDA [Cantalloube et al., 2016]; PACO
- Learning: S4 [Fergus et al., 2014] SODINN [Gonzalez et al., 2017], CNN [Yip et al., 2020]
- Temporal: RSM [Dahlqvist et al., 2020], TRAP [Samland et al., 2021]
- Physics: PeX [Devanay et al., 2017], MEDUSAE [Cantalloube et al., 2018]

Main challenges

- dealing with the high contrat, high-resolution,
- accounting for the non-stationarities of the background,
- being robust against large fluctuations & outliers.

Subtraction-based: general principle

Subtraction: cADI [Marois+, 2006]; KLIP/PCA [Soummer+, 2012]; TLOCI [Lafrénière+, 2014] and many variants ...

+ possibility to add a forward model of planet signature (KLIP-FM: [Pueyo+, 2016], FMMF: [Ruffio+, 2017])

 \Rightarrow Used routinely in direct imaging...

but limited sensibility & no control false alarm / detection probabilities / 27

Subtraction-based \Rightarrow decomposition-based: *LLSG*

local data decomposition: low rank + sparse + gaussian

Model of the observations: $\mathbf{M} = \mathbf{L} + \mathbf{S} + \mathbf{N}$

[Gomez Gonzalez et al., 2016]

 \Rightarrow explicit unmixing of the planet signal \neq PCA, (T)LOCI

• Inverse problem formulation:

 $\begin{aligned} &\Rightarrow \{\widehat{\mathbf{L}}, \widehat{\mathbf{S}}\} = \arg \ \min_{\mathbf{L}, \mathbf{S}} \frac{1}{2} ||\mathbf{M} - \mathbf{L} - \mathbf{S}||_2^2 \quad \text{s.t.} \quad \operatorname{rank}(\mathbf{L}) \leq r, ||\mathbf{S}||_0 \leq s \\ &\Rightarrow \{\widehat{\mathbf{L}}, \widehat{\mathbf{S}}\} = \arg \ \min_{\mathbf{L}, \mathbf{S}} \frac{1}{2} ||\mathbf{M} - \mathbf{L} - \mathbf{S}||_2^2 \quad \text{s.t.} \quad ||\mathbf{L}||_* \leq \tau_*, ||\mathbf{S}||_1 \leq \tau_1 \end{aligned}$

• Alternate low-rank plus sparse separation:

$$\begin{split} \widehat{\mathbf{L}}_i &= \arg \min_{\mathbf{L}} ||\mathbf{M} - \mathbf{L} - \widehat{\mathbf{S}}_{i-1}||_F^2 \quad \text{s.t.} \quad \operatorname{rank}(\mathbf{L}) \leq r \\ \widehat{\mathbf{S}}_i &= \arg \min_{\mathbf{S}} ||\mathbf{M} - \widehat{\mathbf{L}}_i - \widehat{\mathbf{S}}||_F^2 \quad \text{s.t.} \quad ||\mathbf{L}||_0 \leq s \end{split}$$

• Subproblems \simeq solved with a greedy approach of truncated SVD: $\widehat{\mathbf{L}}_i = \mathscr{H}_k^{\mathsf{SVD}}(\mathbf{M} - \widehat{\mathbf{S}}_{i-1}) \quad \text{and} \quad \widehat{\mathbf{S}}_i = \mathscr{S}_\lambda(\mathbf{M} - \widehat{\mathbf{L}}_i)$ _{3/27}

An approach to combine residuals from \neq algorithms

Regime Switching Model: state of a system / a time series *target model*: no planet/planet ; *background model*: Gauss/Lap.

• Set of linear equations describing the RSM model:

$$\mathbf{X}_{i_a} = \mu + \beta R_{i_a} \mathbf{P} + \epsilon_{s,i_a} = \begin{cases} \mu + \epsilon_{0,i_a} & \text{if } S_{i_a} = 0\\ \mu + \beta \mathbf{P} + \epsilon_{1,i_a} & \text{if } S_{i_a} = 1 \end{cases}$$

• Probability ξ_{s,i_a} of \mathbf{X}_{i_a} being in a state $S_{i_a} = s$ at step i_a is: $\xi_{s,i_a} = \mathsf{P}(S_{i_a}|\{\mathbf{X}_{i_a}, \mathbf{X}_{i_a-1}\}, \mathbf{P}, \mu, \beta, \sigma) = \sum_{q=0}^{1} \frac{\eta_{s,i_a} p_{q,s} \xi_{q,i_a-1}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',s'} \xi_{q',i_a-1}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',s'} \xi_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',s'} \xi_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',s'} \xi_{q',i_a-1}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',i_a-1}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',s'} \xi_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s'} q_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a-1}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s',i_a} p_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{s'} q_{q',i_a-1}}}{\sum_{s'=0}^{1} \frac{\eta_{$

- Iterative inference algorithm to estimate the model parameters
- The probabibility of being in a state depends on the previous state and on the transition probability (preset)

SNR_t: t-test based on small sample statistics (Mawet+, 2014) versus STIM: Standardized Trajectory Intensity Mean (Pairet+, 2019)

The absence of explicit computation of SNR map for approaches based on image subtraction/decomposition remains a problem 5/27 Statistics-based: MOODS [Smith+, 2009]; ANDROMEDA [Cantalloube+, 2016]

ANDROMEDA general principle:

Statistics-based: PACO, robust PACO, PACO ASDI [Flasseur+, 2018, 2019, 2020] PACO general principle:

PACO (PAtch COvariances): local learning of the background covariances

PACO principle

- Accounts for background fluctuations
- Local modeling: \simeq 50 pixels/patch \Rightarrow Local adaptivity
- Detection: binary hypothesis test
- Characterization: max. likelihood
 - Unbiased astrometry
 - Unbiased photometry

PACO (PAtch COvariances): local learning of the background covariances

PACO principle

- Accounts for background fluctuations
- Local modeling: \simeq 50 pixels/patch \Rightarrow Local adaptivity
- Detection: binary hypothesis test
- Characterization: max. likelihood
 - Unbiased astrometry
 - Unbiased photometry

PACO principle

 \Rightarrow Local adaptivity

 Unbiased astrometry Unbiased photometry

PACO: data-driven exoplanet detection & characterization

PACO (PAtch COvariances): local learning of the background covariances

PACO principle

PACO: data-driven exoplanet detection & characterization

PACO (PAtch COvariances): local learning of the background covariances

PACO (PAtch COvariances): local learning of the background covariances

PACO principle

- Accounts for background fluctuations
- Local modeling: \simeq 50 pixels/patch \Rightarrow Local adaptivity
- Detection: binary hypothesis test
- Characterization: max. likelihood
 - Unbiased astrometry
 - Unbiased photometry

PACO (PAtch COvariances): local learning of the background covariances

PACO (PAtch COvariances): local learning of the background covariances

PACO (PAtch COvariances): local learning of the background covariances

Introduction Subtraction/Decomposition Statistics Learning Temporal Conclusions PACO: modeling the fluctuations of the nuisance component Statistical model Gaussian Scale Mixture (GSM) to model a patch patch $f_{n,t}$ at pixel n and time t: $f_{n,t} = m_n + \overline{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$ $p_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}(f_{n,t} \mid m_n, \overline{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_n)$ where $n = \lfloor \phi_t \rfloor$

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch**

batch
$$f_{n,t}$$
 at pixel n and time t : $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$

$$\mathsf{p}_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}(f_{n,t} \mid m_n, \boxed{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_n) \text{ where } n = \lfloor \phi_t \rceil$$

Statistical learning

Estimated through fixed-point iterations:

• Scaling factor:
$$\widehat{\boldsymbol{\sigma}}_{n,t}^2 = (1/K) (r_{n,t} - \boldsymbol{m}_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - \boldsymbol{m}_{n,t})^{\mathrm{t}}$$

• Sample mean:
$$\widehat{\boldsymbol{m}}_n = \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} r_{n,t} \right) / \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} \right)$$

• Sample cov.:
$$\widehat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left| \frac{1}{\sigma_{n,t}^2} \right| (r_{n,t} - \boldsymbol{m}_{n,t}) (r_{n,t} - \boldsymbol{m}_{n,t})^{\mathrm{t}}$$
.

• Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\widehat{\mathbf{C}}_n = (1 - \widehat{\rho}_n)\widehat{\mathbf{S}}_n + \widehat{\rho}_n\widehat{\mathbf{F}}_n$.

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch**

batch
$$f_{n,t}$$
 at pixel n and time t : $f_{n,t} = m_n + \underbrace{\sigma_{n,t}}_{u_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$
$$\mathsf{p}_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}(f_{n,t} \mid m_n, \underbrace{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_n) \text{ where } n = \lfloor \phi_t \rceil$$

Statistical learning

Estimated through fixed-point iterations:

• Scaling factor:
$$\widehat{\sigma}_{n,t}^2 = (1/K) (r_{n,t} - m_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - m_{n,t})^{\mathrm{t}}$$

• Sample mean:
$$\widehat{m}_n = \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2}\right] r_{n,t}\right) / \left(\sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2}\right]\right)$$

• Sample cov.:
$$\widehat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left| \frac{1}{\sigma_{n,t}^2} \left| (r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^{\mathrm{t}} \right. \right|$$

• Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\widehat{\mathbf{C}}_n = (1 - \widehat{\rho}_n)\widehat{\mathbf{S}}_n + \widehat{\rho}_n\widehat{\mathbf{F}}_n$.

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch** patch $f_{n,t}$ at pixel n and time t: $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$

$$\mathsf{p}_{f}(\{\boldsymbol{f}_{n,t}\}_{t=1:T}) = \prod_{t=1}^{r} \mathscr{N}(\boldsymbol{f}_{n,t} \mid \boldsymbol{m}_{n}, \boldsymbol{f}_{n,t'}\}_{t'=1:T}, \mathbf{C}_{n}) \quad \text{where} \quad n = \lfloor \phi_{t} \rceil$$

Statistical learning

Estimated through fixed-point iterations:

• Scaling factor:
$$\widehat{\boldsymbol{\sigma}}_{n,t}^2 = (1/K) (r_{n,t} - \boldsymbol{m}_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - \boldsymbol{m}_{n,t})^t$$

• Sample mean:
$$\widehat{m}_n = \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} r_{n,t}\right) / \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2}\right)$$
.

• Sample cov.:
$$\widehat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left[\frac{1}{\sigma_{n,t}^2} (r_{n,t} - m_{n,t}) (r_{n,t} - m_{n,t})^t \right]$$

• Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\widehat{\mathbf{C}}_n = (1 - \widehat{\rho}_n)\widehat{\mathbf{S}}_n + \widehat{\rho}_n\widehat{\mathbf{F}}_n$.

Weighting maps $1/\hat{\sigma}^2$

Statistical model

Gaussian Scale Mixture (GSM) to model a **patch**

patch
$$f_{n,t}$$
 at pixel n and time t : $f_{n,t} = m_n + \boxed{\sigma_{n,t}} u_{n,t}$ where $u_{n,t} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$
 $\mathsf{p}_f(\{f_{n,t}\}_{t=1:T}) = \prod_{t=1}^T \mathcal{N}(f_{n,t} \mid m_n, \boxed{\{\sigma_{n,t'}\}_{t'=1:T}}, \mathbf{C}_n)$ where $n = \lfloor \phi_t \rceil$

Statistical learning

Estimated through fixed-point iterations:

• Scaling factor:
$$\widehat{\boldsymbol{\sigma}}_{n,t}^2 = (1/K) (r_{n,t} - \boldsymbol{m}_{n,t}) \mathbf{C}_n^{-1} (r_{n,t} - \boldsymbol{m}_{n,t})^{\mathrm{t}}$$

• Sample mean:
$$\widehat{\boldsymbol{m}}_n = \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2} r_{n,t}\right) / \left(\sum_{t=1}^T \frac{1}{\sigma_{n,t}^2}\right)$$

• Sample cov.:
$$\widehat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \left| \frac{1}{\sigma_{n,t}^2} \right| (r_{n,t} - \boldsymbol{m}_{n,t}) (r_{n,t} - \boldsymbol{m}_{n,t})^{\mathrm{t}}$$
.

• Shrunk cov. [Ledoit&Wolf, 2004]; [Chen *et al.*, 2010]: $\widehat{\mathbf{C}}_n = (1 - \widehat{\rho}_n)\widehat{\mathbf{S}}_n + \widehat{\rho}_n\widehat{\mathbf{F}}_n$.

⇒ Is this model relevant?

S/N follows $\mathcal{N}(0,1)$ if no source \Rightarrow controlled PFA or FDR

Statistics

Learning

Temporal

Conclusions

Introduction

Subtraction/Decomposition

S4: a discriminative model based on SVM

local Spatial-Spectral model for Speckle Suppression (Fergus+, 2014)

• data representation:

- exploiting radial motion of speckles wrt. wavelength
- patches in polar coordinates (samples: angles \times exposures)
- model:
 - discriminative: SVM-based, + combined with injections
- learning & testing
 - separating slices within annulus into train/test
 - train new model for each location

- generating labeled data: injections of fake faint sources
 - $\bullet\,$ applying a truncated SVD for various ranks k
 - forming the labeled groundtruths with the residual patches
- training step: a (deep) discriminative model
 - a random forest classifier or a CNN

• testing step: testing each location of the FOV

[Gomez Gonzalez et al., 2017]

Initial approach: SODINN/SODIRF (Gonzalez+ 2017). Improvements in progress (Cantero+ in prep.)

deep PACO: a discriminative model based on stats & CNN

∆missed detection

□false detection

Otrue detection (Flasseur, Bodrito+, 2022)

deep PACO: a discriminative model based on stats & CNN

Example of ROCs curves (HIP 88399, 2015-05-10)

(Flasseur, Bodrito+, 2022)

deep PACO: a discriminative model based on stats & CNN

Example of contrast curves (HIP 88399, 2015-05-10)

Example of photometric errors (HIP 88399, 2015-05-10)

- generating labeled data: a deep generative model
 - training a GAN to produce "pure speckles" (prominent component)
 - injecting fake faint sources into the generated examples
- training step: a deep discriminative model
 - training a CNN based on the generated examples
- testing step: testing from an complete image directly

GAN for modelling the nuisance component ____ CNN for supervised exoplanet detection

Temporal

Conclusions

Temporal-based: general principle

 \Rightarrow Different paradigm: samples are temporal not spatial

Learning

HSR: a temporal approach exploiting metadata

A temporal approach = denoise a time series based on predictors

- choice of the predictors: similar pure background time series
 - excluding the predicted trajectory
 - encompassing the close + opposite + annular areas
 - exploiting metadata containing information about the systematics
- model: ridge regression
 - excluding the time samples affected by a putative exoplanet
- decision: (for a single location)
 - forming the residuals "current time series prediction"
 - checking for signal bump at all time \rightarrow candidates
 - applying a consistent test for each candidate

TRAP: a closely related approach based on inverse problem

A temporal approach = denoise a time series based on predictors

- choice of the predictors: \simeq same criteria
 - same collections for all set of tested pixels (no masking)
- model: causal regression model
 - dimensionality reduction: truncated SVD on the set of predictors
 - $\bullet\,$ simultaneous fit of the transiting planet + speckles patterns
- decision:
 - linear system solved analytically (flux + variance)
 - heuristic to find the exoplanet flux (weighted mean)
 - computation of SNR map

Learning

Wavelet-based denoising as a pre-conditionner

A temporal approach: frequencies of speckles variations + time dependence

• multi-level/resolution analysis (time/frequency)

- applying a wavelet transform to each (derotated) time series
- denoising by soft-thresholding (MAD on the 1st wavelet layer)
- applying inverse transform \rightarrow preconditioned data
- applying a space-based detection algorithm

Introduction	Subtraction/Decomposition	Statistics	Learning	Temporal	Conclusions
Conclusio	ons				

Different classes of post-processing algorithms for exoplanet detection and characterization:

- subtraction / decomposition-based
- statistics-based
- learning-based
- temporal-based

Statistics & temporal approaches

• currently best tradeoff between sensitivity and confidence

Learning-based approaches

- very interesting detection sensitivity...
- ...but stay "black-box approaches"

 \Rightarrow see brainstorming sessions this afternoon about control of the uncertainties, model-based approaches, and integration of the metadata.

References (1/2)

Subtraction-based:

- R. Soummer et al., "Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages", The Astrophysical Journal Letters, 755(2), L28, 2012. [KLIP]
- A. Amara et al., "PYNPOINT: an image processing package for finding exoplanets", Monthly Notices of the Royal Astronomical Society, 427(2), 2012. [KLIP]
- D. Lafrénière et al., "A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging", The Astrophysical Journal, 660(1), 2007. [LOCI]
- C. Marois et al., "Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline", In Adaptive Optics Systems II, SPIE, 7736, 2010. [LOCI]
- C. Marois et al., "TLOCI: A fully loaded speckle killing machine", In proceedings of the International Astronomical Union, 8(S299), 2013. [TLOCI]
- C. Marois et al., "GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging", In Adaptive Optics Systems IV, SPIE, 9148, 2014. [TLOCI]
- L. Pueyo et al., "Detection and characterization of exoplanets using projections on karhunen–loeve eigenimages: Forward modeling", The Astrophysical Journal, 824(2), 2016. [KLIP-FM]
- J.-B. Ruffio et al., "Improving and assessing planet sensitivity of the GPI exoplanet survey with a forward model matched filter", The Astrophysical Journal, 842(1), 2017. [FMMF]
- B. Pairet et al., "STIM map: detection map for exoplanets imaging beyond asymptotic Gaussian residual speckle noise", Monthly Notices of the Royal Astronomical Society, 487(2), 2019. [STIM]

Decomposition-based:

- C. G. Gonzalez et al., "Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences - The LLSG algorithm", Astronomy & Astrophysics, 589, A54, 2016. [LLSG]
- B. Ren et al., "Non-negative matrix factorization: robust extraction of extended structures", The Astrophysical Journal, 852(2), 104, 2018. [NMF]

Statistics-based:

- I. Smith et al., "Detection of a moving source in speckle noise. Application to exoplanet detection", IEEE Transactions on Signal Processing, 57(3), 2009. [MOODS]
- F. Cantalloube et al., "Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data", Astronomy & Astrophysics, 582, A89, 2015. [ANDROMEDA]
- O. Flasseur et al., "Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances-The PACO algorithm", Astronomy & Astrophysics, 618, A138, 2018. [PACO]
- O. Flasseur et al., "Robustness to bad frames in angular differential imaging: a local weighting approach", Astronomy & Astrophysics, 634, A2, 2019. [robust PACO]

Statistics-based:

- O. Flasseur et al., "PACO ASDI: an algorithm for exoplanet detection and characterization in direct imaging with integral field spectrographs", Astronomy & Astrophysics, 637, A9, 2020. [PACO ASDI]
- F. Cantalloube et al., "Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data", Astronomy & Astrophysics, 582, A89, 2015. [ANDROMEDA]

Leaning-based:

- R. Fergus et al., "S4: A Spatial-spectral model for Speckle Suppression. The Astrophysical Journal, 794(2), 161, 2014. [S4]
- C. G. Gonzalez et al., "Supervised detection of exoplanets in high-contrast imaging sequences", Astronomy & Astrophysics, 613, A71, 2018. [SODIRF, SODINN]
- K. H. Yip et al., "Pushing the limits of exoplanet discovery via direct imaging with deep learning", In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2019. [CNN]
- T. D. Gebhard et al., "Physically constrained causal noise models for high-contrast imaging of exoplanets", arXiv:2010.05591, 2021. [HSR]
- T. D. Gebhard et al., "Half-sibling regression meets exoplanet imaging: PSF modeling and subtraction using a flexible, domain knowledge-driven, causal framework", A&A, 666, A9, 2022. [HSR]
- O. Flasseur et al., "Exoplanet detection in angular differential imaging: combining a statistics-based learning with a
 deep-based learning for improved detections", SPIE Adaptive Optics Systems, 12185, 2022. [deep PACO]

Temporal-based:

- M. Samland et al., "TRAP: A temporal systematics model for improved direct detection of exoplanets at small angular separations", Astronomy & Astrophysics, 646, A24, 2021. [TRAP]
- M. J. Bonse et al., "Wavelet based speckle suppression for exoplanet imaging-Application of a de-noising technique in the time domain", arXiv:1804.05063, 2018. [wavelet]
- C. H. Dahlqvist et al., "Regime-switching model detection map for direct exoplanet detection in ADI sequences", Astronomy & Astrophysics, 633, A95, 2020. [RSM]

Physics-based:

- N. Devaney et al., "PeX 1. Multispectral expansion of residual speckles for planet detection", Monthly Notices of the Royal Astronomical Society, 472(3), 2017. [PeX]
- F. Cantalloube et al., "Status of the MEDUSAE post-processing method to detect circumstellar objects in high-contrast multispectral images", arXiv:1812.04312, 2018. [MEDUSAE]

spectral dataset	+ convolution + regularizations \Rightarrow inverse-problem			
chromatic model of speckles based on diffraction				
	Physics based			

⇒ Different paradigm: samples are spectral not spatial/temporal

- constructing basis of components with reference **R**: $\{\widehat{\mathbf{W}}, \widehat{\mathbf{H}}\} = \arg\min_{\mathbf{W}, \mathbf{H}} \frac{1}{2} ||\mathbf{R} - \mathbf{W}\mathbf{H}||_{F}^{2} \text{ s.t. } \operatorname{rank}(\mathbf{W}\mathbf{H}) < \operatorname{rank}(\mathbf{R})$ $\widehat{\mathbf{W}}^{(k+1)} = \widehat{\mathbf{W}}^{(k)} \cdot * \left[\mathbf{R}\widehat{\mathbf{H}}^{(k)^{t}}\right] . / \left[\widehat{\mathbf{W}}^{(k)}\widehat{\mathbf{H}}^{(k)}\widehat{\mathbf{H}}^{(k)^{t}}\right]$ $\widehat{\mathbf{H}}^{(k+1)} = \widehat{\mathbf{H}}^{(k)} \cdot * \left[\widehat{\mathbf{W}}^{(k)^{t}}\mathbf{R}\right] . / \left[\widehat{\mathbf{W}}^{(k)^{t}}\widehat{\mathbf{W}}^{(k)}\widehat{\mathbf{H}}^{(k)}\right]$
 - modeling any target \mathbf{M} with the component basis $\widehat{\mathbf{H}}$: scaling: $\widehat{w}^{(k+1)} = \widehat{w}^{(k)} \cdot * \left[\mathbf{M}\widehat{\mathbf{H}}^{t}\right] \cdot / \left[\widehat{w}^{(k)}\widehat{\mathbf{H}}\widehat{\mathbf{H}}^{t}\right]$ projection: $\mathbf{M}_{\mathsf{NMF}} = \widehat{w}\widehat{\mathbf{H}}$
 - NMF \neq KLIP, LLSG:

NMF does not remove the mean of every image + entries non-negative \Rightarrow non-orthogonal component basis

projection is iterative

 \Rightarrow finding a non-neg combination of components to model ${\bf M}$