Post-processing algorithms for exoplanet

detection and characterization at high contrast
by angular (and spectral) differential imaging

A focus on data-driven approaches

Olivier Flasseur
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Introduction

Typical dataset from VLT /SPHERE-IFS instrument

angular & spectral diff. im. (ASDI) = temporal & spectral diversity
data Agg = 1.64 um
X

spatio-spectral slice cuts

Peculiarities

@ Faint signal from the exoplanets
@ Non-stationary and spatially correlated strong background
@ Strong fluctuations (stellar leakages)
@ Multi-spectral data available
= Signal processing is mandatory <




Introduction

State-of-the-art processing methods: summary

Existing methods

@ Subtraction - Decomposition: KLIP [soummer et al,, 2012]; TLOCI [Lafréniere et al., 2014]
@ Statistics: MOOQODS [smith et a/,, 2009]; ANDROMEDA [Cantalloube et al., 2016]; PACO
@ Learning: S4 [Fergus et al, 2014] SODINN [Gonzalez et al,, 2017], CNN [Yip et al., 2020]

@ Temporal: RSM [Dahiquist et al., 2020, TRAP [Samland et al., 2021]

("] PhySiCSZ PeX [Devanay et al., 2017], MEDUSAE [Cantalloube et al., 2018]

into patches
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the example of PACO

Learning based

Main challenges
@ dealing with the high contrat, high-resolution,
@ accounting for the non-stationarities of the background,
@ being robust against large fluctuations & outliers.




Subtraction/Decomposition

Subtraction-based: general principle
Subtraction: cADI [Marois+, 2006]; KLIP/PCA (soummer+, 2012]; TLOCI [Lafréniere+, 2014]
and many variants...

time
ty 2! 3] L4
3 o
2 v *H
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KLIP based TLOCI based|

+ possibility to add a forward model of planet signature
(KLIP-FM: [Pueyo+, 2016], FMMF: [Ruffio+, 2017])

= Used routinely in direct imaging...
but limited sensibility & no control false alarm / detection probabilities /27




Subtraction/Decomposition

Subtraction-based = decomposition-based: LLSG

‘Iocal data decomposition: low rank + sparse + gaussian‘

Model of the observations- M =L+S + N

low-rank gaussian

[Gomez Gonzalez et al., 2016]

= explicit unmixing of the planet signal # PCA (T)LOCI

@ Inverse problem formulation:

= {L,S} = arg ming, g 5[[M—L—S|[3 st rank(L) <7,[[S|lo<s

= {L,S} =arg min, g M ~L—-S|3 st [L|l. <7, ||S]i <7

@ Alternate low-rank plus sparse separation:

L =arg ming, [M—L -8, || st rank(L)<r
S; =arg ming |[M—L; —S||2 st. |[Lljo<s
@ Subproblems ~ solved with a greedy approach of truncated SVD:
L, Z%SVD(M—gi—l) and S, =AM -L,) 3/21



Subtraction/Decomposition

An approach to combine residuals from # algorithms

‘ Regime Switching Model: state of a system / a time series‘
target model: no planet/planet ; background model: Gauss/Lap.

Set of linear equations describing the RSM model:
o . ) pteo, if S;, =0
Xla =+ BRZQP + €s,iq — { A+ ﬂP + €14, if Sia =1

Probability & ;, of X, being in a state S;, = s at step i, is:
1

Eain = P(Si [{Xiy, Xiy 1}, Py, By0) = 3 ——estaPacbaiiat
=0 Z Z Ns!iqPa’ ' €q’ yig—1

q’=0s'=0

annulus-wise processing . . .
@ |Iterative inference algorithm to
estimate the model parameters

@ The probabibility of being in a state
depends on the previous state and on

the transition probability (preset)

T % e®

4/21
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Subtraction/Decomposition

Different ways to compute SNR from residuals

SNR;: t-test based on small sample statistics (Mawet+, 2014)
versus
STIM: Standardized Trajectory Intensity Mean (Pairet+, 2019)

fo= [,(S[!lf)

g2

=1 g3 LIS
SNR; [Pairet et al., 2019] STIM

The absence of explicit computation of SNR map for approaches based
on image subtraction/decomposition remains a problem 5/27



Statistics

Statistics-based: general principle

Statistics-based: MOODS [smith+, 2009); ANDROMEDA [cantalloube+, 2016]

time

ANDROMEDA general principle:

ejep
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difference
of images
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differential PSF

Statistics based

6/27



Statistics

Statistics-based: general principle

Statistics-based: PACO, robust PACO, PACO ASDI [Flasseur+, 2018, 2019, 2020]

PACO general principle:

ejep

U

U

local statistical model of

statistical detection

background fluctuations

1

decomposition
into patches ¢

the example of PACO

z_

S atistically-grounded|
e SNR map

-

Statistics based

7/21



Statistics

PACO: data-driven exoplanet detection & characterization

PACO (PAtch COvariances): local learning of the background covariances

PACO principle

@ Accounts for background fluctuations

@ Local modeling: ~ 50 pixels/patch
= Local adaptivity

@ Detection: binary hypothesis test

@ Characterization: max. likelihood

e Unbiased astrometry =z
o Unbiased photometry

=- Parameter-free algorithm

8/27
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PACO: data-driven exoplanet detection & characterization
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PACO: data-driven exoplanet detection & characterization

PACO (PAtch COvariances): local learning of the background covariances
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Statistics

PACO: data-driven exoplanet detection & characterization

PACO (PAtch COvariances): local learning of the background covariances

exoplanet
location

PACO principle

exoplanet
location
at 1

@ Accounts for background fluctuations

= Local adaptivity
@ Detection: binary hypothesis test
o Characterization: max. likelihood 7
o Unbiased astrometry : =z
o Unbiased photometry '

patches containing the exoplanet

77
@ Local modeling: ~ 50 pixels/patch = = 7

» ~ off-axis point spread function

g background patches collection

=- Parameter-free algorithm‘
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Statistics

PACQO: statistical framework
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Statistics

PACQO: statistical framework
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Statistics

PACQO: statistical framework
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Statistics

PACO: modeling the fluctuations of the nuisance component

Statistical model
Gaussian Scale Mixture (GSM) to model a patch
patch [, : at pixel n and time t: [, = m, —|—un,t where u,: ~ 4 (0,C,)

T
P ({mitimrr) = IT A (Pt | M [{oneocin | Ca) where n=|g:]
t=1

10/27



Statistics

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a patch
patch [, : at pixel n and time t: [, = m, —|—un,t where u,: ~ 4 (0,C,)

T
P ({/nebemrr) = [T A (St | mns[{ons}omir | Ca) where n = [g1]
t=1
Statistical learning

Estimated through fixed-point iterations:

@ Scaling factor: = (1/K) (Tnt — Mnt)Crt(Trt — Mint)® .

& 1 1
@ Sample mean: m, = (Zthl = T‘n,t> / (ZtT=1 p) ) :
n n

,t

(rn,t - mn,t)(rn,t - "’n/n,t)t .

@ Sample cov.: S, = % ZZ;I

o~

@ Shrunk cov. [Ledoit&Wolf, 2004]; [Chen et al., 2010]: Cpn = (1 — pn)Sn + pnFon .

10/27



Statistics

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a patch
patch f, : at pixel n and time t: f,,+ = m, +-r7,,_f un,: where wu,; ~ 4(0,C,)
iy
pr({Frt}e=1.7) = [T A (Fn.e ‘ Mo, | {00 v }er=1.7 .C,,) where n = | @]

=l
v

Statistical learning

Estimated through fixed-point iterations:

@ Scaling factor: | o4, | = (1/K) (Tn,t — M) Crt(Tas — mn0)b
oA~ T 1 / T 1
® Sample mean: M, = (>, | —— nt | /| Doiey| =3 .
Ot Ot
. Q 1 T 1 : 5 t
® Samplecov.: S, = £ . 2 (Tr,e — M ye) (Tt — Ming)"
t

o~

@ Shrunk cov. [Ledoit&Wolf, 2004]; [Chen et al., 2010]: Cpn = (1 — pn)Sn + pnFon .

y
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Statistics

PACO: shrinkage estimation of covariances

Issue and proposed approach
@ Limited number of samples (T ~ K) to estimate C,, (K x K)
= C,, is very noisy and rank deficient.
A form of regularization has to be enforced.

@ Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
= A bias/variance tradeoff: automatic and locally adaptive.

max
ahrlnkage ! shrinkage
factor \ factor \
= (1-p, + 7,
Fn min

n
shrinkage sample diagonal covariance
estimator covariance estimator

. tr(52)+tr( n) — 230 [Snl3,
(T +1)(tx(S2) — S5, [Snl2e)

with

11/27



Statistics

PACO: shrinkage estimation of covariances

Issue and proposed approach

@ Limited number of samples (T ~ K) to estimate C,, (K x K)
= C,, is very noisy and rank deficient.

A form of regularization has to be enforced.

@ Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
= A bias/variance tradeoff: automatic and locally adaptive.

max
shrinkage shrinkage
ac tor\ actor \
bi - pY unbiased Y low variance
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Statistics

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a patch
patch f, : at pixel n and time t: f,: = m, +u,,_f where wu,,; ~ A4 (0,C,)

T
Pf<{fn./}17|:’/‘) — H : J"’(.f?z./ ‘7nn< {(7”_/’}/’71:1' -Cn) where n = L()/—‘

=l
v

Statistical learning

Estimated through fixed-point iterations:

@ Scaling factor: = (1/K) (Tnt — Mnt)Crt(Trt — Mint)® .

A T 1 T 1
® Sample mean: M, = (>, | —— nt | /| Doiey| =3 :
Ot Ot

a T
® Sample cov.: S, = = Yot | = (Pt — M ) (P — Tn 1)

® Shrunk cov. [Ledoit&Wolf, 2004]; [Chen et al., 2010]: Cpn = (1 — p)Sn + PnFon .

y

11/27



Statistics

Weighting maps 1/52

data 1/82

SaEY

0 -
=- impact of large fluctuations is decreased
= robustness is improved 12/27



Statistics

PACO: modeling the fluctuations of the nuisance component

Statistical model

Gaussian Scale Mixture (GSM) to model a patch
patch [, : at pixel n and time t: [, = m, —|—un,t where u,: ~ 4 (0,C,)

T
P ({/nebemrr) = [T A (St | mns[{ons}omir | Ca) where n = [g1]
t=1
Statistical learning

Estimated through fixed-point iterations:

@ Scaling factor: = (1/K) (Tnt — Mnt)Crt(Trt — Mint)® .

& 1 1
@ Sample mean: m, = (Zthl = rn,t> / (ZtT=1 p) ) :
n n

,t

(rn,t - mn,t)(rn,t - Frn/n,t)t .

@ Sample cov.: S, = % ZZ;I

o~

@ Shrunk cov. [Ledoit&Wolf, 2004]; [Chen et al., 2010]: Cpn = (1 — pn)Sn + pnFon .

= Is this model relevant?
12/27



Statistics

PACO: statistically grounded detection criterion

Likelihood Ratio Test (GLRT)

“background at n,t ~ N (Mmy, 3n,tén)”
—~ Z hn ‘bt)t (Tn,t—'f?Ln) 4
@ criterion: S/N = & = = >
7e z 1 =g o
Z [}Qnthn(d)t)t'cn hn(¢t)
t=1 b

detection criterion in absence of source

Gaussian scale mixture model

5 = robust-PACO

‘S/N follows .47(0, 1) if no source = controlled PFA or FDR

13/27



Statistics

PACO: statistically grounded astro-photometry

accuracy

x10'5(/'211>iX)
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. sge o . 0.4
detection sensitivity: achievable contrast X
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= theoretical min. variance
o
x10%0
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of. false detections N \
with K e\ e 2
NSa



Learning

S4: a discriminative model based on SVM

‘Iocal Spatial-Spectral model for Speckle Suppression‘ (Fergus+, 2014)

@ data representation:
e exploiting radial motion of speckles wrt. wavelength
e patches in polar coordinates (samples: angles x exposures)

@ model:
e discriminative: SVM-based, + combined with injections

@ learning & testing
o separating slices within annulus into train/test
e train new model for each location

|
|

|

|

|

|

|

|

1

“ |
¥ '
|

|

|

|

|

|

|

|

1

|

Fergus et al, 2014++]
Machine Learning

Prediction Map Construction ! 15/27



Learning

SODINN: a discriminative model based on CNN

@ generating labeled data: injections of fake faint sources
o applying a truncated SVD for various ranks k
o forming the labeled groundtruths with the residual patches

@ training step: a (deep) discriminative model
e a random forest classifier or a CNN

@ testing step: testing each location of the FOV

labeled data generation model training step trained model evaluation

and Y to tranftsstivaligation sets
°

Convolutional LSTM layer

kernel=(3x3), filters=40
patches
3d Max pooling
size=(2x2x2)

fi
Convolutional LSTM layer [ERinecicassiicy
kernel=(2x2), filters=80

Input cube (n frames)

3d Max pooling Probability of
SVD residuals, size=(2x2x2) positive class
low-rank reshaped S
approximation back to the Units=128 Binary map
image
space ReLU activation + dropout
Output dense layer -
: samples units=1 =

0 --- 1 : Labels Sigmoid activation threshold (e.g.

0.9 probability)

[Gomez Gonzalez et al., 2017]

Initial approach: SODINN/SODIRF (Gonzalez+ 2017). Improvements in progress (Cantero+ in prep.) 16 /27



Learning

deep PACO: a discriminative model based on stats & CNN

[ e L e RS e R T - R M A COMEE S  — to improve the SNR and the stationarity

contains
almost noise

local adaptivity

er

parameter-free

patch n

22/ WA

tradeoff between model
complexity / data fidelity

Learning: semantic segmentation and regression semantic segmentation Iegression

— supervised training with simulated exoplanets CNN CNN
[ —| (full frames) (patches)
samples: _

])I‘(‘])I‘()(T(‘SS(‘(] ir nages
i ~

g/

\ output: detectlon map output: estimated intensity
shuffling ) 1.0
. T )
injected fake exoplanets / >
5
data augmentation to deal Yk % K
with lack of groundtruth é

groundtruths: ~,

) Dice score
location (overlap measure) MSE

+ L e ] TSR LT
intensity va F1R score

(tradeoff precision/recall)
Vi
Ye arch
e

VGG-like

more flexible model ea, .
cratch 17/27

U-Net
“: (backbone Res-Net18) from



Learning

deep PACO: a discriminative model based on stats & CNN

Example of detection maps (HIP 88399, 2015-05-10)

cADI (VIP)

cADI
5 5
- L
l"/ \‘
L hoe j
o A i % /
o) \ © N
7
— —— _IA
18" 5
PCA (VIP) PACO proposed
5 5
//"" - \A\ // """" \C\).\‘ /_/"/ “\g.\
y /// \\ /// \\ ) // \
/ v / \ / \
o  we® ; fe * ) hea * \,
i ! \ o ' i o
\\ @ A _J \X © N \\ o) A
\ 7 \ 7 \ 7
N~ ~f NS
-5 5| 0
Amissed detection Ofalse detection

Otrue detection

(Flasseur, Bodrito+, 2022)
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Learning

deep PACO: a discriminative model based on stats & CNN
Example of ROCs curves (HIP 88399, 2015-05-10)

o.

true positive rate (TPR)

true positive rate (TPR)

06

angular separation: [0 ; 2] arcsec

6

angular separation: [2 ; 4] arcsec

2
I
g
% 06
=@= cADL: AUC = 0.53 g0 =@= cADI: AUC = 0.6
s CADI (VIP): AUC = 0.6 g == CADI (VIP): AUC = 0.65
H
2 s PCA (VIP): AUC = 0.62 502 s PCA (VIP): AUC = 0.67
PACO: AUC = 0.81 s PACO: AUC = 0.83
e deep PACO: AUC =091 mim deep PACO: AUC =0.92
00
00 02 04 ) o5 10 00 02 04 06 s o
false discovery rate (FDR) false discovery rate (FDR)
angular separation: [4 ; 6] arcsec angular separation: [6 ; 7] arcsec
10
_ o8 s
2 —
2
g .
2o6
£
H
=@= cADI: AUC = 0.1 gos m@= cADI: AUC = 0.15
mefum cADI (VIPY: AUC=059 | & e cADI (VIP): AUC = 038

s PCA (VIP): AUC = 0.55

PACO: AUC =0.71
mwm deep PACO:AUC = 0.88!

00

’-:— deep PACO: AUC =09

PACO: AUC =0.77

04 06 o5 10
false discovery rate (FDR)

(Flasseur, Bodrito+, 2022)

04 06 10
false discovery rate (FDR)
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Learning

deep PACO: a discriminative model based on stats & CNN
Example of contrast curves (HIP 88399, 2015-05-10)

—e— CcADI
—+— cADI (VIP)

105 —+— PCA (VIP)
PACO
1 deep PACO
Z \
‘E \
S
10764

-~
fundamental lower limit
(photon noise)

0 i 2 3 4 5 6
angular separation (arcsec)

(Flasseur, Bodrito+, 2022)



Learning

deep PACO: a discriminative model based on stats & CNN
Example of photometric errors (HIP 88399, 2015-05-10)

—— CNN
— PACO
S
£ 10! 4
5 10
T
o
0 1 2 3 4 5 6

Separation (as)

(Flasseur, Bodrito+, 2022) 21/27



Learning

A generative and discriminative approach

o generating labeled data: a deep generative model
o training a GAN to produce “pure speckles” (prominent component)
e injecting fake faint sources into the generated examples

@ training step: a deep discriminative model
o training a CNN based on the generated examples

o testing step: testing from an complete image directly

GAN for modelling the nuisance component CNN for supervised exoplanet detection

GAN Traing Set
/ (2006 images) GAN by

Unlabeled Test Set
(440 images)

CNN Test et
(4000 Images)

Simuiated Datavith
Planes (10000
images)

CNN Vaidaion Set
4000 Images)

Sinulated Data
vithoutPlanets
(10,000 images)

sinuted Specke
Pattern (10000
images)

Hyperparameter
Tuning

Evalutaion of GAN on
Real Data

CNN Traning Set
(12,000 inages)

NN

Real Data from
NCMOS (2502
images)

Evalutaton of CNN on
Simulated Data

(Appluﬂun of cuN)
on Real Data.
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Temporal

Temporal-based: general principle

planet

+ planet model

L

speckles

¢

analysis of temporal
light curves

Temporal based

= Different paradigm: samples are temporal not spatial

temporal dataset
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Temporal

HSR: a temporal approach exploiting metadata

‘A temporal approach = denoise a time series based on predictors

@ choice of the predictors: similar pure background time series
o excluding the predicted trajectory
e encompassing the close + opposite + annular areas
o exploiting metadata containing information about the systematics

@ model: ridge regression
o excluding the time samples affected by a putative exoplanet

e decision: (for a single location)
o forming the residuals “current time series - prediction”
o checking for signal bump at all time — candidates
o applying a consistent test for each candidate

Use for training  Mask  Train Y A ... expected
—_——— p
Y P L 3 — observed
@ =t Y A A WA ‘ / ‘o____) T —
H anet i
- rac % O’ LTSNS EoL SUSAIN
> implied G s TN
= by (Y,T)
@ Qo DN v (O R S
Check for signal bum i 3 = 0.75
Time g P Match fraction: 377 =0.
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Temporal

TRAP: a closely related approach based on inverse problem

‘A temporal approach = denoise a time series based on predictors‘

@ choice of the predictors: ~ same criteria
e same collections for all set of tested pixels (no masking)

@ model: causal regression model
e dimensionality reduction: truncated SVD on the set of predictors

e simultaneous fit of the transiting planet + speckles patterns

@ decision:
o linear system solved analytically (flux + variance)
o heuristic to find the exoplanet flux (weighted mean)
e computation of SNR map

choice of the predictors regression

current pixel Design matrix Coefficients Data

Offset (pixel)

ofst il (Sarulandy, 2021) 25 /27



Temporal

Wavelet-based denoising as a pre-conditionner

‘A temporal approach: frequencies of speckles variations + time dependence‘

e multi-level/resolution analysis (time/frequency)
o applying a wavelet transform to each (derotated) time series

applying a space-based detection algorithm

Sgnal

denoising by soft-thresholding (MAD on the 1st wavelet layer)
applying inverse transform — preconditioned data

Denoised fake planet signal

i) Fake planet signal Fake planet signal with noise
oss
SR oA A 2110 )X 9%
& = £ 2006 < \"‘

,“‘H, ' Il

: s

data model wavelet denoising = suppression of short-term temporal variations
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Conclusions

Conclusions

Different classes of post-processing algorithms for exoplanet
detection and characterization:
@ subtraction / decomposition-based

° ‘ statistics-based ‘

° ‘ learning-based ‘

° ‘ temporal-based ‘

Statistics & temporal approaches
@ currently best tradeoff between sensitivity and confidence

Learning-based approaches
@ very interesting detection sensitivity...

@ ...but stay “black-box approaches”

= see brainstorming sessions this afternoon about control of the

uncertainties, model-based approaches, and integration of the metadata.
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Conclusions

Physics-based: general principle

+ convolution
+regularizations

= inverse-problem

spectral dataset

chromatic model of speckles
based on diffraction

Physics based

= Different paradigm: samples are spectral not spatial /temporal




Conclusions

Decomposition-based: Non-Negative Matrix factorization

@ constructing basis of components with reference R:
{W H} = arg miny 5 5||R — WH||% st rank(WH) < rank(R)
WEHD) — Wk) {Rﬁ(k)t} ./ [W(k)ﬁ(k)ﬁ(k)t}
HED — H®) 4 [W(’f)tR} ./ {V/V(k)t\/ﬁ(k)ﬁ(k)}

e modeling any target M with the component basis H:
scaling: WD = o), « [MHt} /[@(’“)ﬁﬁt}
projection: Myme = oH
o NMF # KLIP, LLSG:
NMEF does not remove the mean of every image + entries non-negative

= non-orthogonal component basis

projection is iterative
= finding a non-neg combination of components to model M
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