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Post-processing algorithms for exoplanet
detection and characterization at high contrast
by angular (and spectral) differential imaging

A focus on data-driven approaches
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Typical dataset from VLT/SPHERE-IFS instrument
angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Peculiarities
Faint signal from the exoplanets
Non-stationary and spatially correlated strong background
Strong fluctuations (stellar leakages)
Multi-spectral data available

⇒ Signal processing is mandatory ⇐
1 / 27
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State-of-the-art processing methods: summary
Existing methods

Subtraction - Decomposition: KLIP [Soummer et al., 2012]; TLOCI [Lafrénière et al., 2014]

Statistics: MOODS [Smith et al., 2009]; ANDROMEDA [Cantalloube et al., 2016]; PACO
Learning: S4 [Fergus et al., 2014] SODINN [Gonzalez et al., 2017], CNN [Yip et al., 2020]

Temporal: RSM [Dahlqvist et al., 2020], TRAP [Samland et al., 2021]

Physics: PeX [Devanay et al., 2017], MEDUSAE [Cantalloube et al., 2018]

Main challenges
dealing with the high contrat, high-resolution,
accounting for the non-stationarities of the background,
being robust against large fluctuations & outliers. 2 / 27
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Subtraction-based: general principle
Subtraction: cADI [Marois+, 2006]; KLIP/PCA [Soummer+, 2012]; TLOCI [Lafrénière+, 2014]

and many variants...

+ possibility to add a forward model of planet signature
(KLIP-FM: [Pueyo+, 2016], FMMF: [Ruffio+, 2017])

⇒ Used routinely in direct imaging...
but limited sensibility & no control false alarm / detection probabilities3 / 27
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Subtraction-based ⇒ decomposition-based: LLSG
local data decomposition: low rank + sparse + gaussian

Model of the observations: M = L + S + N

⇒ explicit unmixing of the planet signal 6= PCA, (T)LOCI
Inverse problem formulation:
⇒ {L̂, Ŝ} = arg minL,S

1
2 ||M− L− S||22 s.t. rank(L) ≤ r , ||S||0 ≤ s

⇒ {L̂, Ŝ} = arg minL,S
1
2 ||M− L− S||22 s.t. ||L||∗ ≤ τ∗ , ||S||1 ≤ τ1

Alternate low-rank plus sparse separation:
L̂i = arg minL ||M− L− Ŝi−1||2F s.t. rank(L) ≤ r

Ŝi = arg minS ||M− L̂i − Ŝ||2F s.t. ||L||0 ≤ s
Subproblems ' solved with a greedy approach of truncated SVD:

L̂i = H SVD
k (M− Ŝi−1) and Ŝi = Sλ(M− L̂i) 3 / 27
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An approach to combine residuals from 6= algorithms
Regime Switching Model: state of a system / a time series
target model : no planet/planet ; background model : Gauss/Lap.

Set of linear equations describing the RSM model:

Xia = µ+ βRiaP + εs,ia =
{
µ+ ε0,ia if Sia = 0
µ+ βP + ε1,ia if Sia = 1

Probability ξs,ia of Xia being in a state Sia = s at step ia is:
ξs,ia = P(Sia |{Xia ,Xia−1},P, µ, β, σ) =

1∑
q=0

ηs,iapq,sξq,ia−1
1∑

q′=0

1∑
s′=0

ηs′,ia
pq′,s′ξq′,ia−1

(Dahlqvist+, 2020)

Iterative inference algorithm to
estimate the model parameters

The probabibility of being in a state
depends on the previous state and on
the transition probability (preset)

4 / 27
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Different ways to compute SNR from residuals
SNRt: t-test based on small sample statistics (Mawet+, 2014)

versus
STIM: Standardized Trajectory Intensity Mean (Pairet+, 2019)

The absence of explicit computation of SNR map for approaches based
on image subtraction/decomposition remains a problem 5 / 27
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Statistics-based: general principle
Statistics-based: MOODS [Smith+, 2009]; ANDROMEDA [Cantalloube+, 2016]

ANDROMEDA general principle:

⇒ Very recent; still under development / testing phase
6 / 27
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Statistics-based: general principle
Statistics-based: PACO, robust PACO, PACO ASDI [Flasseur+, 2018, 2019, 2020]

PACO general principle:

⇒ Very recent; still under development / testing phase
7 / 27
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PACO: data-driven exoplanet detection & characterization
PACO (PAtch COvariances): local learning of the background covariances

PACO principle
Accounts for background fluctuations
Local modeling: ' 50 pixels/patch

⇒ Local adaptivity
Detection: binary hypothesis test
Characterization: max. likelihood

Unbiased astrometry
Unbiased photometry

⇒ Parameter-free algorithm
8 / 27
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PACO: statistical framework

source flux
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PACO: modeling the fluctuations of the nuisance component
Statistical model

Gaussian Scale Mixture (GSM) to model a patch
patch fn,t at pixel n and time t: fn,t = mn + σn,t un,t where un,t ∼ N (0,Cn)

pf ({fn,t}t=1:T ) =
T∏
t=1

N
(
fn,t

∣∣mn, {σn,t′}t′=1:T ,Cn

)
where n = bφte

Statistical learning
Estimated through fixed-point iterations:

Scaling factor: σ̂2
n,t = (1/K) (rn,t −mn,t)C−1

n (rn,t −mn,t)t .

Sample mean: m̂n =

(∑T

t=1
1
σ2
n,t

rn,t

)
/

(∑T

t=1
1
σ2
n,t

)
.

Sample cov.: Ŝn = 1
T

∑T

t=1
1
σ2
n,t

(rn,t −mn,t)(rn,t −mn,t)t .

Shrunk cov. [Ledoit&Wolf, 2004]; [Chen et al., 2010]: Ĉn = (1− ρ̂n)Ŝn + ρ̂nF̂n .

⇒ Is this model relevant?
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PACO: shrinkage estimation of covariances
Issue and proposed approach

Limited number of samples (T ≈ K) to estimate Cn (K ×K)
⇒ Ĉn is very noisy and rank deficient.

A form of regularization has to be enforced.
Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
⇒ A bias/variance tradeoff: automatic and locally adaptive.

with ρ̂n = tr(Ŝ2
n) + tr2(Ŝn)− 2

∑K
k=1[Ŝn]2kk

(T + 1)(tr(Ŝ2
n)−

∑K
k=1[Ŝn]2kk)

11 / 27
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⇒ Ĉn is very noisy and rank deficient.

A form of regularization has to be enforced.
Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
⇒ A bias/variance tradeoff: automatic and locally adaptive.

with ρ̂n = tr(Ŝ2
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Weighting maps 1/σ̂2

⇒ impact of large fluctuations is decreased
⇒ robustness is improved 12 / 27
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PACO: statistically grounded detection criterion
Derivation of the Generalized Likelihood Ratio Test (GLRT)

“background at n, t ∼ N (m̂n, σ̂n,tĈn)”

criterion: S/N = α̂
σ̂α

=

T∑
t=1

1
σ̂2
n,t

hn(φt)t·Ĉ−1
n ·
(
rn,t−m̂n

)
√

T∑
t=1

1
σ̂2
n,t

hn(φt)t·Ĉ−1
n ·hn(φt)

H1
≷
H0

τ

10-6

10-5

10-4

10-3

-4 -3 -2 -1 0 1 2 3 4

S/N follows N (0,1) if no source ⇒ controlled PFA or FDR
13 / 27
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PACO: statistically grounded astro-photometry

14 / 27
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S4 : a discriminative model based on SVM
local Spatial-Spectral model for Speckle Suppression (Fergus+, 2014)

data representation:
exploiting radial motion of speckles wrt. wavelength
patches in polar coordinates (samples: angles × exposures)

model:
discriminative: SVM-based, + combined with injections

learning & testing
separating slices within annulus into train/test
train new model for each location

15 / 27



Introduction Subtraction/Decomposition Statistics Learning Temporal Conclusions

SODINN : a discriminative model based on CNN
generating labeled data: injections of fake faint sources

applying a truncated SVD for various ranks k
forming the labeled groundtruths with the residual patches

training step: a (deep) discriminative model
a random forest classifier or a CNN

testing step: testing each location of the FOV

Initial approach: SODINN/SODIRF (Gonzalez+ 2017). Improvements in progress (Cantero+ in prep.) 16 / 27
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deep PACO: a discriminative model based on stats & CNN
Preprocessing: centering and local whitening with PACO model

local adaptivity

parameter-free

Learning: semantic segmentation and regression

in
te

ns
ity

(patches)(full frames)
CNN CNN

output: estimated intensityoutput: detection map

spectral channels

semantic segmentation regression

data augmentation to deal 
with lack of groundtruth

MSEDice score

MSEF1R score

U-Net VGG-like

(overlap measure)

(tradeoff precision/recall)

(backbone Res-Net18)

groundtruths:

samples:

tradeoff between model
complexity / data fidelity

supervised training with simulated exoplanets

more flexible model
17 / 27
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deep PACO: a discriminative model based on stats & CNN
Example of detection maps (HIP 88399, 2015-05-10)
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proposed

(Flasseur, Bodrito+, 2022) 18 / 27
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deep PACO: a discriminative model based on stats & CNN
Example of ROCs curves (HIP 88399, 2015-05-10)

false discovery rate (FDR)
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deep PACO: a discriminative model based on stats & CNN
Example of contrast curves (HIP 88399, 2015-05-10)

fundamental lower limit
(photon noise)

(Flasseur, Bodrito+, 2022) 20 / 27
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deep PACO: a discriminative model based on stats & CNN
Example of photometric errors (HIP 88399, 2015-05-10)

(Flasseur, Bodrito+, 2022) 21 / 27
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A generative and discriminative approach
generating labeled data: a deep generative model

training a GAN to produce “pure speckles” (prominent component)
injecting fake faint sources into the generated examples

training step: a deep discriminative model
training a CNN based on the generated examples

testing step: testing from an complete image directly

22 / 27
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Temporal-based: general principle

⇒ Different paradigm: samples are temporal not spatial

23 / 27
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HSR : a temporal approach exploiting metadata
A temporal approach = denoise a time series based on predictors

choice of the predictors: similar pure background time series
excluding the predicted trajectory
encompassing the close + opposite + annular areas
exploiting metadata containing information about the systematics

model: ridge regression
excluding the time samples affected by a putative exoplanet

decision: (for a single location)
forming the residuals “current time series - prediction”
checking for signal bump at all time → candidates
applying a consistent test for each candidate

(Gebhard+, 2021, 2022) 24 / 27
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TRAP: a closely related approach based on inverse problem
A temporal approach = denoise a time series based on predictors

choice of the predictors: ' same criteria
same collections for all set of tested pixels (no masking)

model: causal regression model
dimensionality reduction: truncated SVD on the set of predictors
simultaneous fit of the transiting planet + speckles patterns

decision:
linear system solved analytically (flux + variance)
heuristic to find the exoplanet flux (weighted mean)
computation of SNR map

(Samland+, 2021) 25 / 27
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Wavelet-based denoising as a pre-conditionner
A temporal approach: frequencies of speckles variations + time dependence

multi-level/resolution analysis (time/frequency)
applying a wavelet transform to each (derotated) time series
denoising by soft-thresholding (MAD on the 1st wavelet layer)
applying inverse transform → preconditioned data
applying a space-based detection algorithm

(Bonse+, 2018)

26 / 27
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Conclusions
Different classes of post-processing algorithms for exoplanet
detection and characterization:

subtraction / decomposition-based
statistics-based
learning-based

temporal-based

Statistics & temporal approaches
currently best tradeoff between sensitivity and confidence

Learning-based approaches
very interesting detection sensitivity...
...but stay “black-box approaches”

⇒ see brainstorming sessions this afternoon about control of the
uncertainties, model-based approaches, and integration of the metadata.

27 / 27
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Physics-based: general principle

⇒ Different paradigm: samples are spectral not spatial/temporal
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Decomposition-based: Non-Negative Matrix factorization
constructing basis of components with reference R:

{Ŵ , Ĥ} = arg minW ,H
1
2 ||R−WH||2F s.t. rank(WH) < rank(R)

Ŵ(k+1) = Ŵ(k). ∗
[
RĤ(k)t

]
./
[
Ŵ(k)Ĥ(k)Ĥ(k)t

]
Ĥ(k+1) = Ĥ(k). ∗

[
Ŵ(k)tR

]
./
[
Ŵ(k)tŴ(k)Ĥ(k)

]
modeling any target M with the component basis Ĥ:

scaling: ŵ(k+1) = ŵ(k). ∗
[
MĤt

]
./
[
ŵ(k)ĤĤt

]
projection: MNMF = ŵĤ

NMF 6= KLIP, LLSG:

NMF does not remove the mean of every image + entries non-negative
⇒ non-orthogonal component basis

projection is iterative
⇒ finding a non-neg combination of components to model M
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