Post-processing algorithms for high contrast reconstruction of the circumstellar environment by angular (and spectral) differential imaging *A focus on inverse problem approaches*

Olivier Flasseur

ADI (VLT/SPHERE-IRDIS)

ASDI (VLT/SPHERE-IFS)

Workshop COBREX, 3rd October 2022

angular differential imaging (ADI) = temporal diversity

angular differential imaging (ADI) = temporal diversity

angular differential imaging (ADI) = temporal diversity

 \Rightarrow Unmixing through signal processing is mandatory \Leftarrow

angular differential imaging (ADI) = temporal diversity

- Disk (and exoplanet) signal stays weak
- Non-stationary and multi-correlated nuisance component
 - \Rightarrow Unmixing through signal processing is mandatory \Leftarrow

angular differential imaging (ADI) = temporal diversity

- Disk (and exoplanet) signal stays weak
- Non-stationary and multi-correlated nuisance component
 - \Rightarrow Unmixing through signal processing is mandatory \Leftarrow

angular differential imaging (ADI) = temporal diversity

Specificities

- Disk (and exoplanet) signal stays weak
- Non-stationary and multi-correlated nuisance component
 - \Rightarrow Unmixing through signal processing is mandatory \Leftarrow

angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Specificities

- Disk (and exoplanet) signal stays weak
- Non-stationary and multi-correlated nuisance component
 - \Rightarrow Unmixing through signal processing is mandatory \Leftarrow

The classical pipeline:

Key step: estimation of the on-axis PSF

- median or mean: cADI (Marois+, 2006), and many variants
- linear combination: {T, M, A}-LOCI (Marois+, 2014), (Wahhaj+, 2015)
- principal component analysis: KLIP (Soummer+, 2012), (Amara+, 2012)

Limitations

• no explicit modeling of the nuisance component

 \Rightarrow high residual stellar leakages

no explicit modeling of the image formation process
 ⇒ high morphological and photometric

 \Rightarrow high morphological and photometric distorsions

More advanced algorithms:

iterative PCA (Pairet+, 2018)

data imputation strategy (Ren+, 2020)

The common ingredient: the image formation model

Operators / implementation:

- Q: rotation / (sparse) interpolation matrix
- Γ: attenuation / diagonal matrix
- H: blur / bi-dimensional discrete convolution
- V: truncation / sparse matrix

Subject to small variations depending on the algorithm.

The example of the REXPACO-based algorithms

Specificities of REXPACO-based algorithms:

- \Rightarrow accounting for the statistics Ω of the nuisance $f \leftarrow$
- REXPACO (Flasseur+, 2021): for ADI observations
- robust REXPACO (Flasseur+, 2022): temporal robustness
- REXPACO ASDI (Flasseur+, sub., ArXiv): for ASDI observations

Regularized reconstruction: *framework*

Model of the observed intensity

$r = \mathbf{A} \, \boldsymbol{x} + \boldsymbol{f} \,,$

- $r(\mathbb{R}^{N \times T})$: total intensity in ADI stack of T frames with N pixels, • $x((\mathbb{R}^+)^M)$: unknown object flux,
- $\mathbf{A} \ (\mathbb{R}^M \to \mathbb{R}^{N \times T})$: linear operator describing the image formation,
- $f(\mathbb{R}^{N \times T})$: noise; $f \gg \mathbf{A} \mathbf{x}$, nonstationary, fluctuates over time.

Regularized reconstruction: *framework*

Model of the observed intensity

$r = \mathbf{A} \, \boldsymbol{x} + \boldsymbol{f} \,,$

- r (ℝ^{N×T}): total intensity in ADI stack of T frames with N pixels,
 x ((ℝ⁺)^M): unknown object flux,
 A (ℝ^M → ℝ^{N×T}): linear operator describing the image formation,
- $f(\mathbb{R}^{N \times T})$: noise; $f \gg \mathbf{A} \mathbf{x}$, nonstationary, fluctuates over time.

Regularized reconstruction of the object flux

Resolution of an inverse problem:

$$\label{eq:constraint} \begin{split} \widehat{\pmb{x}} &= \arg\min_{\pmb{x}>\pmb{0}} \{ \mathscr{C}(r, \pmb{x}, \mathbf{A}, \pmb{\Omega}, \pmb{\mu}) = \mathscr{D}(r, \mathbf{A}\, \pmb{x}, \pmb{\Omega}) + \mathscr{R}(\pmb{x}, \pmb{\mu}) \} \,, \end{split}$$

• $\mathscr{D}(r, \mathbf{A} \mathbf{x}, \mathbf{\Omega})$: data-fidelity term, depends on $\mathbf{\Omega}$ statistics of \mathbf{f} ,

• $\mathscr{R}(\boldsymbol{x}, \boldsymbol{\mu})$: regularization term, depends on hyperparameters $\boldsymbol{\mu}$.

Statistical model

Multi-variate Gaussian (
$$\mathbf{\Omega} = \{\mathbf{m}, \mathbf{C}\}$$
)

$$\Rightarrow oldsymbol{f} = oldsymbol{m} + oldsymbol{u}$$
 where $oldsymbol{u} \sim \mathscr{N}(oldsymbol{0}, oldsymbol{C})$

Co-log-likelihood:

$$\mathscr{D}(r, \mathbf{A}\,\boldsymbol{x}, \boldsymbol{\Omega}) = \frac{T}{2} \log \det \mathbf{C} + \frac{1}{2} \sum_{t=1}^{T} ||r_t - \boldsymbol{m} - [\mathbf{A}\,\boldsymbol{x}]_t||_{\mathbf{C}^{-1}}^2.$$

Statistical model

Multi-variate Gaussian (
$$\mathbf{\Omega} = \{\mathbf{m}, \mathbf{C}\}$$
)

$$\Rightarrow oldsymbol{f} = oldsymbol{m} + oldsymbol{u}$$
 where $oldsymbol{u} \sim \mathscr{N}(oldsymbol{0}, oldsymbol{C})$

Co-log-likelihood: $\mathscr{D}(r, \mathbf{A} \boldsymbol{x}, \boldsymbol{\Omega}) = \frac{T}{2} \log \det \mathbf{C} + \frac{1}{2} \sum_{t=1}^{T} \|r_t - \boldsymbol{m} - [\mathbf{A} \boldsymbol{x}]_t\|_{\mathbf{C}^{-1}}^2.$

Statistical learning

Estimators from the maximum likelihood:

•
$$\widehat{\boldsymbol{m}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - [\mathbf{A} \boldsymbol{x}]_t),$$

• $\widehat{\mathbf{C}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - \boldsymbol{m} - [\mathbf{A} \boldsymbol{x}]_t) (r_t - \boldsymbol{m} - [\mathbf{A} \boldsymbol{x}]_t)^{\top}.$

Statistical model

Multi-variate Gaussian (
$$\Omega = \{m, C\}$$
)

$$\Rightarrow oldsymbol{f} = oldsymbol{m} + oldsymbol{u}$$
 where $oldsymbol{u} \sim \mathscr{N}(oldsymbol{0}, oldsymbol{C})$

Co-log-likelihood: $\mathscr{D}(r, \mathbf{A} \, \boldsymbol{x}, \boldsymbol{\Omega}) = \frac{T}{2} \log \det \mathbf{C} + \frac{1}{2} \sum_{t=1}^{T} \|r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t\|_{\mathbf{C}^{-1}}^2.$

Statistical learning

Estimators from the maximum likelihood:

•
$$\widehat{\boldsymbol{m}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - [\mathbf{A} \, \boldsymbol{x}]_t),$$

• $\widehat{\mathbf{C}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t)^{\top}.$

? Limited number T of samples to estimate $\hat{\mathbf{C}}$? The estimators $\widehat{\boldsymbol{m}}$ and $\hat{\mathbf{C}}$ depend on the unknown object flux \boldsymbol{x}

Statistical model

Multi-variate Gaussian (
$$\Omega = \{m, C\}$$
)

$$\Rightarrow oldsymbol{f} = oldsymbol{m} + oldsymbol{u}$$
 where $oldsymbol{u} \sim \mathscr{N}(oldsymbol{0}, oldsymbol{C})$

Co-log-likelihood: $\mathscr{D}(r, \mathbf{A} \mathbf{x}, \mathbf{\Omega}) = \frac{T}{2} \log \det \mathbf{C} + \frac{1}{2} \sum_{t=1}^{T} ||r_t - \mathbf{m} - [\mathbf{A} \mathbf{x}]_t||_{\mathbf{C}^{-1}}^2.$

Statistical learning

Estimators from the maximum likelihood:

•
$$\widehat{\boldsymbol{m}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - [\mathbf{A} \, \boldsymbol{x}]_t),$$

• $\widehat{\mathbf{C}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t)^T$

Limited number T of samples to estimate $\hat{\mathbf{C}}$ \Rightarrow Local modeling of PAtch COvariances

Local learning of PAtch COvariances

REXPACO: Reconstruction of Extended features by learning of PAtch COvariances

REXPACO principle

Accounts for background fluctuations $\widehat{\mathbf{\Omega}}_n = \{\widehat{m{m}}_n, \widehat{\mathbf{C}}_n\}$

• Local modeling: $K \simeq 80 \text{ pix/patch}$

 \Rightarrow local adaptivity \Leftarrow

• Reconstruction: all patches

Local learning of PAtch COvariances

REXPACO: Reconstruction of Extended features by learning of PAtch COvariances

REXPACO principle

Accounts for background fluctuations $\widehat{\mathbf{\Omega}}_n = \{\widehat{m{m}}_n, \widehat{\mathbf{C}}_n\}$

• Local modeling: $K \simeq 80 \text{ pix/patch}$

 \Rightarrow local adaptivity \Leftarrow

• Reconstruction: all patches

? In spite of local modeling, $K \approx T$ \Rightarrow A form of regularization on covariances should be enforced

Local learning of PAtch COvariances – *shrinkage*

Issue and proposed approach

• Limited number of samples $(T \approx K)$ to estimate $\mathbf{C}_n (K \times K)$ $\Rightarrow \widehat{\mathbf{C}}_n$ is very noisy or rank deficient.

A form of regularization should be enforced.

- Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
 - \Rightarrow A bias/variance tradeoff: automatic and locally adaptive.

Local learning of PAtch COvariances – *shrinkage*

Issue and proposed approach

- Limited number of samples $(T \approx K)$ to estimate \mathbf{C}_n $(K \times K)$ $\Rightarrow \widehat{\mathbf{C}}_n$ is very noisy or rank deficient.
 - A form of regularization should be enforced.
- Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]
 - \Rightarrow A bias/variance tradeoff: automatic and locally adaptive.

Statistical model

$$\begin{array}{l} \mathsf{Multi-variate Gaussian} \left(\boldsymbol{\Omega}_n = \{ \boldsymbol{m}_n, \mathbf{C}_n \} \right) \\ \Rightarrow \boldsymbol{f}_n = \boldsymbol{m}_n + \boldsymbol{u}_n \ \text{where} \ \boldsymbol{u}_n \sim \mathscr{N}(\boldsymbol{0}, \mathbf{C}_n) \end{array}$$

$$\mathscr{D}(r, \mathbf{A}\,\boldsymbol{x}, \boldsymbol{\Omega}) = \frac{T}{2} \sum_{n=1:K}^{N} \log \det \widetilde{\mathbf{C}}_{n} + \frac{1}{2} \sum_{n=1:K}^{N} \sum_{t=1}^{I} \| [\mathbf{P}_{n}](r_{t} - \widehat{\boldsymbol{m}} - [\mathbf{A}\,\boldsymbol{x}]_{t}) \|_{\widetilde{\mathbf{C}}_{n}^{-1}}^{2}.$$

$$\mathbf{P}_{n} : \text{ patch-extractor operator around pixel } n$$

Statistical learning

•
$$\widehat{\boldsymbol{m}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - [\mathbf{A} \, \boldsymbol{x}]_t),$$

• $\widetilde{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^{T} \left([\mathbf{P}_n] (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) \right) \left([\mathbf{P}_n] (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) \right)^{\top},$
• $\widetilde{\mathbf{C}}_n = (1 - \widetilde{\rho}_n) \widetilde{\mathbf{S}}_n + \widetilde{\rho}_n \widetilde{\mathbf{F}}_n.$

Co- $\mathcal{D}($

Modeling of the nuisance component

Statistical model

Multi-variate Gaussian
$$(\Omega_n = \{m_n, \mathbf{C}_n\})$$

 $\Rightarrow \boldsymbol{f}_n = \boldsymbol{m}_n + \boldsymbol{u}_n \text{ where } \boldsymbol{u}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$
Co-log-likelihood:
 $\mathscr{D}(r, \mathbf{A} \boldsymbol{x}, \boldsymbol{\Omega}) = \frac{T}{2} \sum_{n=1:K}^{N} \log \det \widetilde{\mathbf{C}}_n + \frac{1}{2} \sum_{n=1:K}^{N} \sum_{t=1}^{T} \|[\mathbf{P}_n](r_t - \hat{\boldsymbol{m}} - [\mathbf{A} \boldsymbol{x}]_t)\|_{\widetilde{\mathbf{C}}_n^{-1}}^2$
 \mathbf{P}_n : patch-extractor operator around pixel n

Statistical learning

•
$$\widehat{\boldsymbol{m}} = \frac{1}{T} \sum_{t=1}^{T} (r_t - [\mathbf{A} \, \boldsymbol{x}]_t),$$

• $\widetilde{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^{T} \left(\left[\mathbf{P}_n \right] (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) \right) \left(\left[\mathbf{P}_n \right] (r_t - \boldsymbol{m} - [\mathbf{A} \, \boldsymbol{x}]_t) \right)^{\mathsf{T}},$
• $\widetilde{\mathbf{C}}_n = (1 - \widetilde{\rho}_n) \widetilde{\mathbf{S}}_n + \widetilde{\rho}_n \widetilde{\mathbf{F}}_n.$

The estimators \widehat{m} and $\widetilde{\mathbf{C}}$ depend on the unknown object flux x

Alternate/joint strategy

• Statistics biased by the object \Rightarrow Alternate/joint estimation of $\widehat{\Omega}$ and \widehat{x}

• Statistics biased by the object \Rightarrow Alternate/joint estimation of $\widehat{\Omega}$ and \widehat{x}

– a single reconstruction :

 \Rightarrow The photometry is (mostly) preserved by the method.

• Statistics biased by the object \Rightarrow Alternate/joint estimation of $\hat{\Omega}$ and \hat{x}

 \Rightarrow The photometry is (mostly) preserved by the method.

Alternate/joint strategy

• Statistics biased by the object \Rightarrow Alternate/joint estimation of $\hat{\Omega}$ and \hat{x}

 \Rightarrow The photometry is (mostly) preserved by the method.

Unsupervised regularization & optimization

Unsupervised estimation of μ with SURE

$$\mathscr{R}(\boldsymbol{x}, \boldsymbol{\mu}) = \underline{\mu_{\ell_1}} \sum_{n=1}^N |\boldsymbol{x}_n| + \underline{\mu_{\mathsf{smooth}}} \sum_{n=1}^N \sqrt{||\boldsymbol{\Delta}_n \boldsymbol{x}||_2^2 + \epsilon^2} \,.$$

• SURE; unbiased estimator of MSE [Stein (1981)]

 \Rightarrow accounting for the local statistics Ω of f :

$$\mathsf{SURE}(\boldsymbol{\mu}) = \sum_{n \in \mathbb{P}} \sum_{t} ||r_{n,t} - \widehat{\boldsymbol{m}}_n - [\mathbf{A} \mathbf{v}_{\boldsymbol{\mu}}(r)]_{n,t}||_{\widehat{\boldsymbol{\sigma}}_{n,t}^{-2} \widehat{\mathbf{C}}_n^{-1}}^2 + 2\operatorname{tr}\left(\mathbf{A} \mathbf{J}_{\mathbf{v}_{\boldsymbol{\mu}}}(r)\right) - N,$$

...BUT no closed-form expression of $\mathbf{J}_{\mathbf{v}_{\mu}}(r)$, the Jacobian of \mathbf{v}_{μ} w.r.t r.

• Evaluation of tr $(\mathbf{A} \mathbf{J}_{\mathbf{v}_{\mu}}(r))$ with a *black-box approach* [Ramani (2012)]:

$$\operatorname{tr}\left(\mathbf{A} \mathbf{J}_{\mathbf{v}\boldsymbol{\mu}}(r)\right) \approx \xi^{-1} \boldsymbol{b}^{\top} \mathbf{A} \left[\mathbf{v}_{\boldsymbol{\mu}}(r+\xi \boldsymbol{b}) - \mathbf{v}_{\boldsymbol{\mu}}(r)\right],$$

Optimization

- bound constraints: $oldsymbol{x} > oldsymbol{0}$
- differentiable objective function

 \Rightarrow solved with VMLMB [Thiébaut (2002)]

real data (HR 4796)

Unsupervised regularization & optimization

real data (HR 4796)

Unsupervised regularization & optimization

Comparison with cADI/PCA on VLT/SPHERE IRDIS data

statistical model \Rightarrow residual stellar leakages are reduced image formation model \Rightarrow non-physical artefacts are reduced

Comparison with cADI/PCA on VLT/SPHERE IRDIS data

statistical model \Rightarrow residual stellar leakages are reduced image formation model \Rightarrow non-physical artefacts are reduced image formation model \Rightarrow angular resolution is improved

Unmixing point-like and extended features

Unmixing point-like and extended features

Improving the robustness by temporal weighting

local + data-driven identification and neutralization of outliers

 \Rightarrow impact of large fluctuations is decreased, robustness is improved 17/25

Improving the robustness by temporal weighting

robustness benefits:

statistical model ⇒ better rejection of nuisance comp.

statistical model \Rightarrow better reconstruct. of fine structures at short separations

see Maud's focus for more results 18/25

Joint multi-spectral processing: general principle

Comparison with cADI/PCA on VLT/SPHERE IFS data

statistical model ⇒ residual stellar leakages are reduced image formation model ⇒ non-physical artefacts are reduced image formation model ⇒ angular resolution is improved spectral diversity ⇒ the key for disks with a circular symmetry

VLT/SPHERE IFS reconstructions - other targets

AB Aurigae

HD 163296

A focus on MAYONNAISE, MUSTARD algorithms

MAYONNAISE (Pairet 2021+)

inverse problem approach, with specific regularization terms, no statistical modeling of the nuisance component

Model of the observed intensity

 $r = \mathbf{A} \left(\mathbf{x}_d + \mathbf{x}_p \right) + \mathbf{f} \,,$

• $r(\mathbb{R}^{N \times T})$: total intensity in ADI stack of T frames with N pixels,

- $\boldsymbol{x} = \boldsymbol{x}_d + \boldsymbol{x}_p \left((\mathbb{R}^+)^M \right)$: unknown object flux (disk + planets),
- $\mathbf{A} (\mathbb{R}^M \to \mathbb{R}^{N \times T})$: image formation model (rotation + blur),
- $f(\mathbb{R}^{N \times T})$: noise; $f \gg \mathbf{A} \mathbf{x}$, nonstationary, fluctuates over time.

Regularized reconstruction

$$\{\widehat{oldsymbol{x}}_{d}, \widehat{oldsymbol{x}}_{p}, \widehat{oldsymbol{f}}\} = rgmin_{oldsymbol{x}_{d}, oldsymbol{x}_{p}, oldsymbol{f}} \left\{ \mathscr{L}\left(r - \mathbf{A}\left(oldsymbol{x}_{d} + oldsymbol{x}_{p}
ight) - oldsymbol{f}
ight) + \mathscr{R}(oldsymbol{x}_{d}, oldsymbol{x}_{p})
ight\},$$

 $\mathscr{L} :=$ Huber loss function ; $\mathscr{R} :=$ regularization term (f is low rank, x_p is sparse in space domain, x_d is sparse in transformed domain).

A focus on MAYONNAISE, MUSTARD algorithms

PDS 70

Courtesy: extracted from (Pairet 2021+)

A focus on MAYONNAISE, MUSTARD algorithms

Coutesy: S. Juillard, extracted from a presentation available at: https://orbi.uliege.be/bitstream/2268/291212/1/PDS70-%20resume.pdf

Different classes of post-processing algorithms for disk imaging:

- subtraction (cADI, PCA, TLOCI),
- artifacts mitigation (iterative PCA, data imputation strategy)
- reference differential imaging,
- parametric approaches with a disk model,
- non-parametric approaches with an image formation model.

Advanced algorithms allows:

- detection at better contrasts,
- better preservation of the disk morphology and photometry
 - reduce classical artifacts (e.g., self-subtraction),
 - reduce stellar leakages,
- unmixing of point-like and extended sources.

Specificities of REXPACO-based algorithms:

- encompass a statistical modeling of the nuisance component,
- spectral diversity is the key for circulo-symmetric disks.

Classical algorithms

Marois+ 2006, "Angular differential imaging: a powerful high-contrast imaging technique", APJ, 641(1), 556 (cADI) Marois+ 2014, "GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging", SPIE Adaptive Optics Systems, 9148 (TLOCI)

Soummer+ 2012, "Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages", APJ Letters, 755(2), L28 (KLIP/PCA)

Artifacts mitigation without reference

Pairet+ 2018, "Reference-less algorithm for circumstellar disks imaging", ArXiv (iterative PCA)

Ren+ 2020, "Using data imputation for signal separation in high-contrast imaging", APJ, 892(2), 74 (data imputation)

Artifacts mitigation with reference

Gerard+ 2016, "Planet detection down to a few λ/D : an RSDI/TLOCI approach to PSF subtraction", SPIE Adaptive Optics (RSDI/TLOCI)

Ren+ 2018, "Non-negative matrix factorization: robust extraction of extended structures", APJ, 852(2), 104 (NMF) Xuan+ 2018, "Characterizing the performance of the NIRC2 vortex coronagraph at WM Keck Observatory", APJ, 156(4), 156 (RDI ADI on KECK/NIRC2 data)

Ruane+ 2019, "Reference star differential imaging of close-in companions and circumstellar disks with the NIRC2 vortex coronagraph at the WM Keck Observatory", APJ, 157(3), 118 (RDI ADI on KECK/NIRC2 data)

Wahhaj+ 2021, "A search for a fifth planet around HR 8799 using the star-hopping RDI technique at VLT/SPHERE", A&A, 648, A26 (star-hopping RDI on VLT/SPHERE data)

Disk models

Milli+ 2017, "Near-infrared scattered light properties of the HR 4796 A dust ring - A measured scattering phase function from 13.6° to 166.6°", A&A, 599, A108 (disk model fitting on HR 4796 data)

Esposito+ 2013, "Modeling self-subtraction in angular differential imaging: Application to the HD 32297 debris disk", APJ, 780(1), 25

Mazoyer+ 2020, "A forward modeling tool for disk analysis with coronagraphic instruments", SPIE Ground-based and Airborne Instrumentation for Astronomy, 11447 (DiskFM: forward-backward modeling for disk)

Inverse problems

Pairet+ 2021, "MAYONNAISE: a morphological components analysis pipeline for circumstellar discs and exoplanets imaging in the near-infrared", MNRAS, 503(3) (MAYONNAISE)

Julliard+ 2022, "A spiral arm in the protoplanety disk PDS70?" (presentation) (MUSTARD)

Flasseur+ 2021, "REXPACO: An algorithm for high contrast reconstruction of the circumstellar environment by angular differential imaging", A&A, 651, A62 (REXPACO)

Flasseur+ 2022, "Multispectral image reconstruction of faint circumstellar environments from high contrast angular spectral differential imaging (ASDI) data", SPIE Adaptive Optics Systems, 12185 (robust REXPACO)

Flasseur+ (sub), "Joint unmixing and deconvolution for angular and spectral differential imaging", ArXiv (REXPACO ASDI)

Multi-instruments

Multi-epochs

Reconstruction framework - data fidelity

Data fidelity term

Gaussian Scale Mixture $(\mathbf{\Omega}_{n,t} = \{\mathbf{m}_n, \mathbf{\sigma}_{n,t}, \mathbf{C}_n\})$

$$\Rightarrow oldsymbol{f}_{n,t} = oldsymbol{m}_n + oldsymbol{\sigma}_{n,t} \,oldsymbol{u}_n \,$$
 where $oldsymbol{u}_n \sim \mathscr{N}(oldsymbol{0}, oldsymbol{C}_n)$

Co-log-likelihood:

$$\mathscr{D}(r, \mathbf{A} \, \boldsymbol{x}, \boldsymbol{\Omega}) = \frac{1}{2} \sum_{n \in \mathbb{P}} \sum_{t} \log \det \widehat{\boldsymbol{\sigma}}_{n,t}^2 \, \widehat{\mathbf{C}}_n + \frac{1}{2} \sum_{n \in \mathbb{P}} \sum_{t} \|\widehat{\boldsymbol{v}}_{n,t}\|_{\widehat{\boldsymbol{\sigma}}_{n,t}^{-2} \widehat{\mathbf{C}}_n^{-1}}^2,$$

 $\widehat{\boldsymbol{v}}_{n,t} = r_{n,t} - \widehat{\boldsymbol{m}}_n - [\mathbf{A} \, \boldsymbol{x}]_{n,t}$: residual intensity patch around pixel n.

Statistical background modeling

- Scaling factor: $\hat{\boldsymbol{\sigma}}_{n,t}^2 = (1/K) \, \hat{\boldsymbol{v}}_{n,t} \, \hat{\mathbf{C}}_n^{-1} \, \hat{\boldsymbol{v}}_{n,t}^{\top}$
- Sample mean: $\widehat{\boldsymbol{m}}_n = \frac{1}{T} \sum_{t=1}^T \widehat{\boldsymbol{\sigma}}_{n,t}^{-2} \left(r_{n,t} [\mathbf{A} \, \boldsymbol{x}]_{n,t} \right),$
- Sample covariance: $\widehat{\mathbf{S}}_n = \frac{1}{T} \sum_{t=1}^T \widehat{\boldsymbol{\sigma}}_{n,t}^2 \, \widehat{\boldsymbol{v}}_{n,t} \, \widehat{\boldsymbol{v}}_{n,t}^\top \,$,
- Shrunk covariance: $\widehat{\mathbf{C}}_n = (1 \widehat{\rho}_n) \, \widehat{\mathbf{S}}_n + \widehat{\rho}_n \, \widehat{\mathbf{F}}_n = \widehat{\mathbf{W}}_n \odot \, \widehat{\mathbf{S}}_n \, .$

The statistics Ω depends on the sought object x

 \Rightarrow alternate or hierarchical estimation of Ω and x is mandatory

Reconstruction framework – data fidelity

Data fidelity term

Gaussian Scale Mixture $(\mathbf{\Omega}_{n,t} = \{\mathbf{m}_n, \boldsymbol{\sigma}_{n,t}, \mathbf{C}_n\})$ $\Rightarrow \mathbf{f}_{n,t} = \mathbf{m}_n + \boldsymbol{\sigma}_{n,t} \mathbf{u}_n$ where $\mathbf{u}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_n)$

Co-log-likelihood:

$$\begin{split} \mathscr{D}_{\mathsf{joint}}(r, \mathbf{A}\, \pmb{x}, \pmb{\Omega}) &= \frac{1}{2} \sum_{n \in \mathbb{P}} \sum_{t} \log \det \widehat{\pmb{\sigma}}_{n,t}^{2}(\pmb{x}) \, \widehat{\mathbf{C}}_{n}(\pmb{x}) \\ &+ \frac{1}{2} \sum_{n \in \mathbb{P}} \operatorname{tr} \left[\widehat{\mathbf{C}}_{n}^{-1}(\pmb{x}) \left(\widehat{\mathbf{W}}_{n} \odot \sum_{t} \widehat{\pmb{\sigma}}_{n,t}^{-2}(\pmb{x}) \, \widehat{\pmb{v}}_{n,t}(\pmb{x}) \, \widehat{\pmb{v}}_{n,t}(\pmb{x})^{\mathsf{T}} \right) \right] \,, \end{split}$$

 $\widehat{\boldsymbol{v}}_{n,t}(\boldsymbol{x}) = r_{n,t} - \widehat{\boldsymbol{m}}_n(\boldsymbol{x}) - [\mathbf{A} \, \boldsymbol{x}]_{n,t}$: residual intensity patch around pixel n.

Statistical background modeling

• Scaling factor:
$$\widehat{\boldsymbol{\sigma}}_{n,t}^2(\boldsymbol{x}) = (1/K) \, \widehat{\boldsymbol{v}}_{n,t} \, \left(\widehat{\mathbf{W}}_n \odot \widehat{\mathbf{C}}_n^{-1} \right) \, \widehat{\boldsymbol{v}}_{n,t}^\top$$

• Sample mean:
$$\widehat{\boldsymbol{m}}_n(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^T \widehat{\boldsymbol{\sigma}}_{n,t}^{-2} (r_{n,t} - [\mathbf{A} \boldsymbol{x}]_{n,t}),$$

• Sample covariance:
$$\widehat{\mathbf{S}}_n(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^T \widehat{\boldsymbol{\sigma}}_{n,t}^2 \, \widehat{\boldsymbol{v}}_{n,t} \, \widehat{\boldsymbol{v}}_{n,t}^{\top} \, ,$$

• Shrunk covariance:
$$\widehat{\mathbf{C}}_n(\mathbf{x}) = (1 - \widehat{\rho}_n) \, \widehat{\mathbf{S}}_n + \widehat{\rho}_n \, \widehat{\mathbf{F}}_n = \widehat{\mathbf{W}}_n \odot \, \widehat{\mathbf{S}}_n$$