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Introduction

Context: typical dataset from VLT /SPHERE instrument

angular differential imaging (ADI) = temporal diversity

data spatio-temporal slice cuts

b
0-'4—4 min B TIPS

Specificities

G off-axis PSF
@ Disk (and exoplanet) signal stays weak
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= Unmixing through signal processing is mandatory <
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Introduction

Context: typical dataset from VLT /SPHERE instrument
angular & spectral diff. im. (ASDI) = temporal & spectral diversity

a

A1g = 1.18 pm 28 Ago = 1.64 um
Slice along —2—

Specificities
@ Disk (and exoplanet) signal stays weak
@ Non-stationary and multi-correlated nuisance component

= Unmixing through signal processing is mandatory <




Post-processing algorithms

Different categories of algorithms for disk reconstruction

The classical pipeline:

ADI sequence stima residua aligned result

residuals :
attenuation

disk—-

stellar leakages

Key step: estimation of the on-axis PSF

@ median or mean: cADI (Marois+, 2006), and many variants
@ linear combination: {T, M, A}-LOCI (Marois+, 2014), (Wahhaj+, 2015)
@ principal component analysis: KLIP (Soummer+, 2012), (Amara+, 2012)

@ no explicit modeling of the nuisance component
= high residual stellar leakages
@ no explicit modeling of the image formation process
= high morphological and photometric distorsions



https://iopscience.iop.org/article/10.1086/500401/pdf
https://web.archive.org/web/20190501032125id_/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FD7E643F09A59F24286969C43B377158/S1743921313007813a.pdf/div-class-title-tloci-a-fully-loaded-speckle-killing-machine-div.pdf
https://www.aanda.org/articles/aa/pdf/2015/09/aa25837-15.pdf
https://iopscience.iop.org/article/10.1088/2041-8205/755/2/L28/pdf
https://academic.oup.com/mnras/article/427/2/948/977832?login=false

Post-processing algorithms

Different categories of algorithms for disk reconstruction

More advanced algorithms:

artifacts mitigation without reference|

residual estimated
ADI sequence on-axis PSF

iterative PCA
(Pairet+, 2018)

data imputation
strategy
(Ren+, 2020)
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Post-processing algorithms

Different categories of algorithms for disk reconstruction

More advanced algorithms:

estimated "ADI sequence

on-axis PSF of reference "ADI sequence

iy

fformation

" disk model

iterative PCA _.»""see Julien’s & Sophia’s focus .see Johan's focus focus 0/7'”8
(Pairet+, 2018) - presentation

. . - reference differential imaging (RDI) .. (physical) disk model image formation model

data imputation — searching for similarities in 1mages "= parametric approaches .= non-parametric approaches
trate -
strategy . RDI with a large library (Milli+, 2017) " MAYO (Pairet+, 2021)
(Ren+, 2020) - (Gerards, 2016)  (Rent, 2018)
' (Xuan+, 2018) (Ruane+, 2019) (E59081t0+, 2013) . MUSTARD (Juillard+, 2022)

RDI with star hopping (Wahhsj+, 2021).-" DISKFM (Mazoyer+, 2020) - REXPACO (Flasseur+, 2021-22)

+ specific algorithms for polarization data see Maud'’s focus
e.g., inverse problem approach: RAPSHODIE (Denneulin+, 2021) 4/25


https://www.aanda.org/articles/aa/pdf/2021/09/aa39618-20.pdf

Focus on inverse problem approaches

The common ingredient: the image formation model

+nuisance
component, f
\J

parallactic angle 6

interpolation,
temporal frame ¢

Operators / implementation:
@ Q: rotation / (sparse) interpolation matrix
o I': attenuation / diagonal matrix
@ H: blur / bi-dimensional discrete convolution
@ V: truncation / sparse matrix

Subject to small variations depending on the algorithm. 5/25



Focus on inverse problem approaches

The example of the REXPACO-based algorithms

VHI'Qzx
:A:EQ

+nuisance
component f
¥

temporal frame ¢ pointwise
multiplication,

Specificities of REXPACO-based algorithms:
= accounting for the statistics (2 of the nuisance
@ REXPACO (Flasseur+, 2021): for ADI observations

@ robust REXPACO (Flasseur+, 2022): temporal robustness
@ REXPACO ASDI (Flasseur+, sub., ArXiv): for ASDI observations



https://www.aanda.org/articles/aa/pdf/2021/07/aa38957-20.pdf
https://www.researchgate.net/publication/363067829_Multispectral_image_reconstruction_of_faint_circumstellar_environments_from_high_contrast_angular_spectral_differential_imaging_ASDI_data
https://arxiv.org/pdf/2109.12644.pdf

Focus on inverse problem approaches

Regularized reconstruction: framework

Model of the observed intensity

r=Ax+ [,

o r (RVXT):

o ((R+)M): unknown object flux,

total intensity in ADI stack of 7" frames with N pixels,

o A (RM — RV*T): linear operator describing the image formation,

° (RNXT): noise; | > A x, nonstationary, fluctuates over time.
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Focus on inverse problem approaches

Regularized reconstruction: framework

Model of the observed intensity

r=Ax+ [,

RNXT): total intensity in ADI stack of 7" frames with N pixels,

o 7 (
o ((R+)M): unknown object flux,

o A (RM — RV*T): linear operator describing the image formation,

° (RNXT): noise; | > A x, nonstationary, fluctuates over time.

Regularized reconstruction of the object flux

Resolution of an inverse problem:
& = arg min{%(r, 2, A, Q, 1) = D(r, Az, Q) + Z(x, 1)},

x>0

e 7(r,A x,): data-fidelity term, depends on (2 statistics of |,

@ Z(x, 1) regularization term, depends on hyperparameters L.

7725



Focus on inverse problem approaches

Modeling of the nuisance component

Statistical model

Multi-variate Gaussian (2 = {m, C})
= /| =m+u where u~ 4(0,C)
Co-log-likelihood:

T 1L
2(r, Az, Q) = 5 logdet C+ =3 Ire — m — [Aa]4[[%-1
t=1
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Modeling of the nuisance component

Statistical model

Multi-variate Gaussian (2 = {m, C})
= [ =m+u where u~ 4(0,C)

Co-log-likelihood:

T 1L
D(r,Az,Q) = ilogdetC -5 lert —m—[Ax]E-.
t=1

Statistical learning

Estimators from the maximum likelihood:
om =131 (ri—[Ax]y),
C=

+ i1 (re—m — [Aal)(r—m — [Aa])".

? Limited number T' of samples to estimate C

= Local modeling of PAtch COvariances
8/25



Focus on inverse problem approaches

Local learning of PAtch COvariances

REXPACO: Reconstruction of Extended features
by learning of PAtch COvariances

Accounts for background fluctuations
Qn - {’Fﬁ'na Cn}

e Local modeling: K ~ 80 pix/patch

= local adaptivity <

@ Reconstruction: all patches

gbackground patches collection
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Focus on inverse problem approaches

Local learning of PAtch COvariances

REXPACO: Reconstruction of Extended features
by learning of PAtch COvariances

REXPACO principle eV

Accounts for background fluctuations
Qn - {’Fﬁ'na Cn}

= local adaptivity <

£
F—
e Local modeling: K ~ 80 pix/patch /E
S/
=

@ Reconstruction: all patches

gbackgmund patches collection

? In spite of local modeling, K ~ T

= A form of regularization on covariances should be enforced
9/25



Focus on inverse problem approaches

Local learning of PAtch COvariances — shrinkage

Issue and proposed approach
@ Limited number of samples (T ~ K) to estimate C,, (K x K)

= C,, is very noisy or rank deficient.

A form of regularization should be enforced.

@ Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]

= A bias/variance tradeoff: automatic and locally adaptive.

max
shrinkage shrinkage
factor \ factor \
= (1-n, + Pu
1% min

shrinkage sample diagonal covariance
estimator covariance estimator

with 5, — TR 028 250 [Suly
(T+1)(tr(sfzz) Zk:l[ n]kk) 10/25




Focus on inverse problem approaches

Local learning of PAtch COvariances — shrinkage

Issue and proposed approach

@ Limited number of samples (T ~ K) to estimate C,, (K x K)
= C,, is very noisy or rank deficient.

A form of regularization should be enforced.

@ Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]

= A bias/variance tradeoff: automatic and locally adaptive.

max
bhrmkage | shrinkage
fac 01\ dctm\
LR L | unbiased N | low variance
tradeoff o (1 P ")‘ bUt. + 7 n .bUt
| large variance biased
b min
shrinkage sample diagonal covariance
estimator covariance estimator
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Focus on inverse problem approaches

Modeling of the nuisance component

Statistical model

Multi-variate Gaussian (€2, = {m,, C,})
= p=my+u, where u, ~ A4(0,C,)
Co—log—/ike/ihood' N

N T
D(r,Ax,Q) Z log det C,, + % Z Z|- (r: — ]t)H%;l'

n=1:K n=1:K

: patch-extractor operator around pixel n

Statistical learning

:thl —[Az]s),

Sa=2%7 1( (e — 7[Am}t)> ((Tt,mf[Am]t)y’
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Modeling of the nuisance component
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Multi-variate Gaussian (€2, = {m,, C,})
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N T
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| n

n=1:K

: patch-extractor operator around pixe
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:thl —[Az]s),
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? The estimators 712 and C depend on the unknown object flux =
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Focus on inverse problem approaches

Unbiased estimation of the nuisance statistics

of m

Alternate/joint strategy

@ Statistics biased by the object
= Alternate/joint estimation

of Q and =

12/25



Focus on inverse problem approaches

Unbiased estimation of the nuisance statistics

go Jolnt estimation 1Ty difference of m

Alternate/joint strategy v

distortions|

@ Statistics biased by the object
= Alternate/joint estimation

of Q and =

—
=
S
=le
==
22
&=
oh
=10)

8
@

- a single reconstruction :

Qg =1x10"5 : Qgr=1x10"5

cADI

REXPACO

= The photometry is (mostly) preserved by the method.




Focus on inverse problem approaches

Unbiased estimation of the nuisance statistics

[ nojoint estimation[fy7. Joint estimationill 11 (Fo -1 o of 110

Alternate/joint strategy

@ Statistics biased by the object
= Alternate/joint estimation

of Q and =

distortions

profile 1 profile 2 profile 3

round
truth

g

single
reconstruction

-1.5

ground truth Hag, --e--cADI Hz ——REXPACO HZ

= The photometry is (mostly) preserved by the method.
12/25



Focus on inverse problem approaches

Unbiased estimation of the nuisance statistics

. nojoint estimation| o Joint estimatio:

Alternate/joint strategy

@ Statistics biased by the object
= Alternate/joint estimation

of Q and =

distortions

profile 1

round
h

trut

g

e of m

single
max

reconstruction

mi

b ] v—-—- g A3

-2 -1 0 1 2 -2 -1 0 1 2 -1 -0.5 0

ground truth Hxgy --e--cADI Hz ——REXPACO HZ

= The photometry is (mostly) preserved by the method.

0.5(")
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Focus on inverse problem approaches

Unsupervised regularization & optimization

Unsupervised estimation of o with SURE
A N
(@[] = e ] 3 leal 4 [amoon] 3 V/TAm2lF 4.
n=1 n=1

@ SURE; unbiased estimator of MSE [Stein (1981)]

‘ = accounting for the local statistics €2 of ‘:

SURE(k) = Y ) lIrns — mion — [Avu(r)]

neP t

1+ 2tr (Ady,(r)) - N,

...BUT no closed-form expression of J, (), the Jacobian of v, w.r.t r.
@ Evaluation of tr (A Jy,. (T‘)) with a black-box approach [Ramani (2012)]:

tr (AJdy,(r)) €07 A [vu(r +€b) — vu(r)]

Optimization

@ bound constraints: > 0

@ differentiable objective function
= solved with VMLMB [Thiébaut (2002)]

T3725



Focus on inverse problem approaches

Unsupervised regularization & optimization

SURE MSE
Hsmooth 10° Hsmooth 109

injections on real data
(HIP 80019)
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Focus on inverse problem approaches

Unsupervised regularization & optimization

SURE MSE
Hsmooth 109 Hsmooth 10°

lobal minimum

(o]

injections on real data
(HIP 80019)
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Focus on inverse problem approaches

Comparison with cADI/PCA on VLT /SPHERE IRDIS data

o
| ®)
<q
[a
P<
=]
[a'f

HR 4796A RY Lupi SAO 206462 PDS 70

I 1.5q0° [ I 1.8a0° (@ I 4.5a0° [ I 1.5q0*

\PDS 70b

) 0.307
I 4.5q0° [T ot (T 1aot 0 BT 3.2k0°

statistical model = residual stellar leakages are reduced
image formation model = non-physical artefacts are reduced

15/25



Focus on inverse problem approaches

Comparison with cADI/PCA on VLT /SPHERE IRDIS data

o
O
<
ol
<
]
[a

[ Z ]

HR 4796A SAO 206462 PDS 70

PLF\ st 70¢

NSTVRi0 <10°

x10° [0 I 1 g x10% (@ I 3.2k0°

statistical model = residual stellar leakages are reduced
image formation model = non-physical artefacts are reduced
image formation model = angular resolution is improved



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Unmixing point-like and extended features

REXPACO S PACO (PACO component)
T ROI 1

B 325100

REXPACO < PACO (REXPACO component)
T ROI L

PDS 70b
03_077

<100 <10



Focus on inverse problem approaches

Unmixing point-like and extended features

REXPACO < PACO (PACO component)

3

«©

=)

=]

.S

S

2 ROI 1

o

5 -104-PDS 70 b Y P
© PDS 70 ¢ i

_15/4« PLF .

! 2 3 4 50.30

index of REXPACO < PACO iterations
0 B 3000
REXPACO < PACO (REXPACO component)

o [ a
-© PD.
S 5|ApL
ez
3154
élT:
<8E3
E38 o
£72 .
2 1 /
4
0.015 ’
evgy, 001 , 0.0060008%0
g X
ton o 0-005 5 0:0020:008% O csec
! al(’ﬁf?(’) evolution

0 B 3.2 ba0°
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Focus on inverse problem approaches

Improving the robustness by temporal weighting

local 4+ data-driven identification and neutralization of outliers

y % : \ 1/5°

= impact of large fluctuations is decreased, robustness is improved 17/25



Focus on inverse problem approaches

Improving the robustness by temporal weighting

PDS 70 (2018-02-24)

PACO

3.2)x10°

REXPACO

PLES  §EPS 70

Y internal

°\4//',s/.'
PDS 70b

outer disk

robustness benefits:

statistical model =
better rejection of
nuisance comp.

statistical model =
better reconstruct.

of fine structures at
short separations

see Maud'’s focus for
more results 1)



Focus on inverse problem approaches

Joint multi-spectral processing: general principle

IFS data

estimated spatial correlations

distance to the star

estimated spectral correlations

distance to the star

accounting for nonstationary
spatial & spectral correlations

19/25



Focus on inverse problem approaches

Comparison with cADI/PCA on VLT /SPHERE IFS data

HR 4796 SAO 206462 MWC 758 PDS 70
* o™ featd .&‘
2 4
0.15' 073 0 0.30" 0.30"
. leo . | ~¢
\ _ K j
ode > (l > > 24 e
8 e O O ode O D d S {6 {6
ge fo 0 ode o eso 0 oved

0.9



Focus on inverse problem approaches

VLT /SPHERE IFS reconstructions - other targets
AB Aurigae

REXPACO ASDI

REXPACO ASDI

21/25



Focus on inverse problem approaches

A focus on MAYONNAISE, MUSTARD algorithms

MAYONNAISE (Pairet 2021+)
inverse problem approach, with specific regularization terms,
no statistical modeling of the nuisance component

Model of the observed intensity
’I“:A<$d—|-$p)+ ’

RNXT): total intensity in ADI stack of T" frames with N pixels,

o r(
o r=1x,+x, ((R*)M>: unknown object flux (disk + planets),

o A (RM — RV*T): image formation model (rotation + blur),

o / (RNVXT): noise; / > A x, nonstationary, fluctuates over time.

Regularized reconstruction

{Za, @y, |} = arg min{L (r — A (zq +xp) — /) + R(2a,2p)}

L, Lp,

% := Huber loss function ; % := regularization term (| is low rank, Ty
is sparse in space domain, x is sparse in transformed domain).

22 /&5



https://arxiv.org/pdf/2008.05170.pdf

Focus on inverse problem approaches

A focus on MAYONNAISE, MUSTARD algorithms

PDS 70

HR 4796 1w SAO 206462 0

Courtesy: extracted from (Pairet 2021+) 23/25


https://arxiv.org/pdf/2008.05170.pdf

Focus on inverse problem approaches

A focus on MAYONNAISE, MUSTARD algorithms

MUSTARD (Juillard+, 2022, in prep.)
MAYO with decomposition of nuisance component in two terms

/—Ek : Residual and noise (unique to each frame)

Sy :Frame n°k
of the ADI cube

ADI cube

Ri(X) : Rotating contribution — circumstellar

common to all frames

Sk = + Rk(X) + Ek

Coutesy: S. Juillard, extracted from a presentation available at:
https://orbi.uliege.be/bitstream/2268/291212/1/PDS70- %20resume. pdf 24/25


https://orbi.uliege.be/bitstream/2268/291212/1/PDS70-%20resume.pdf

Conclusions

Conclusions

Different classes of post-processing algorithms for disk imaging;:
e subtraction (cADI, PCA, TLOCI),
e artifacts mitigation (iterative PCA, data imputation strategy)
@ reference differential imaging,
@ parametric approaches with a disk model,
@ | non-parametric approaches with an image formation model. ‘

Advanced algorithms allows:

@ detection at better contrasts,

@ better preservation of the disk morphology and photometry
o reduce classical artifacts (e.g., self-subtraction),
o reduce stellar leakages,

@ unmixing of point-like and extended sources.

Specificities of REXPACO-based algorithms:
@ encompass a statistical modeling of the nuisance component,

@ spectral diversity is the key for circulo-symmetric disks.
25 /25
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Conclusions

Reconstruction framework — data fidelity

Gaussian Scale Mixture (€2, ; = {my,, 00, Cp})
= fpt=my+optu, where u, ~.4(0,C,)
Co-log-likelihood:

@(T,A&Q):%ZZlogdeta tC + = ZZantHA ~_

neprP t neprP t

Enyt = Progs = my, — [Ax] n,t: residual intensity patch around pixel n.

Statistical background modeling

@ Scaling factor: 52, = (1/K)n, Cyl o)

@ Sample mean: m,, = % ZtT 1 5;% (ot — [A@]nye),

@ Sample covariance: S, = Zt L OntUn tOn s

® Shrunk covariance: C,, = (1—pn) S, + Pn F, = Wn ®8S,

{ e statistics epends on the sought object «
? The statistics ©2 depends on the sought object
‘ = alternate or hierarchical estimation of (2 and x is mandatory




Conclusions

Reconstruction framework — data fidelity

Data fidelity term

Gaussian Scale Mixture (€2, ; = {my,, 01, Cp})

= fpt=mp+optu, where u, ~.4(0,Cy,)
Co-log-likelihood:

Droim (1, A, Q) = ZZlogdetant(m) Cn(x)

neP ¢
4= Ztrl - (WnQZUM(w Vit () On ¢t () >1 ;
t

o~

V(@) = Pnt — nA”Ln(w) — [A @] ¢ residual intensity patch around pixel n.

Statistical background modeling
@ Scaling factor: 32 oz ) = (1/K) ﬁn ¢ (Wn ® 6;1> Ol
@ Sample mean: m,(x) = & Zt 1Oni (TP —[AT]nt),
@ Sample covariance: Sn( )=+ thl o-fl’t Vn,t Ot s

— ~

@ Shrunk covariance: an(m) =(1-pn) Sn+mFn=W,08,.
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