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Context: typical dataset from VLT/SPHERE instrument
angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Specificities
Disk (and exoplanet) signal stays weak
Non-stationary and multi-correlated nuisance component
⇒ Unmixing through signal processing is mandatory ⇐
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Different categories of algorithms for disk reconstruction
The classical pipeline:

Key step: estimation of the on-axis PSF
median or mean: cADI (Marois+, 2006), and many variants
linear combination: {T, M, A}-LOCI (Marois+, 2014), (Wahhaj+, 2015)
principal component analysis: KLIP (Soummer+, 2012), (Amara+, 2012)

Limitations
no explicit modeling of the nuisance component

⇒ high residual stellar leakages
no explicit modeling of the image formation process

⇒ high morphological and photometric distorsions
3 / 25

https://iopscience.iop.org/article/10.1086/500401/pdf
https://web.archive.org/web/20190501032125id_/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FD7E643F09A59F24286969C43B377158/S1743921313007813a.pdf/div-class-title-tloci-a-fully-loaded-speckle-killing-machine-div.pdf
https://www.aanda.org/articles/aa/pdf/2015/09/aa25837-15.pdf
https://iopscience.iop.org/article/10.1088/2041-8205/755/2/L28/pdf
https://academic.oup.com/mnras/article/427/2/948/977832?login=false
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Different categories of algorithms for disk reconstruction
More advanced algorithms:

focus of this
presentation

REXPACO (Flasseur+, 2021-22)

MAYO (Pairet+, 2021)

MUSTARD (Juillard+, 2022)

 

see Johan's focus 

DISKFM (Mazoyer+, 2020)

(Milli+, 2017)

(Esposito+, 2013)

(Pairet+, 2018)
(physical) disk model

 

iterative PCA
 

see Julien's & Sophia's focus 

image formation model
 = non-parametric approaches
 

= parametric approaches
 

(Ren+, 2020)

reference differential imaging (RDI)
 = searching for similarities in images

 RDI with a large library
 

RDI with star hopping

(Gerard+, 2016) (Ren+, 2018)
(Ruane+, 2019)(Xuan+, 2018)

(Wahhaj+, 2021)

data imputation
strategy
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+ specific algorithms for polarization data see Maud’s focus
e.g., inverse problem approach: RAPSHODIE (Denneulin+, 2021) 4 / 25

https://www.aanda.org/articles/aa/pdf/2021/09/aa39618-20.pdf


Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

The common ingredient: the image formation model

Operators / implementation:
Q: rotation / (sparse) interpolation matrix
Γ: attenuation / diagonal matrix
H: blur / bi-dimensional discrete convolution
V: truncation / sparse matrix

Subject to small variations depending on the algorithm. 5 / 25
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The example of the REXPACO-based algorithms

Specificities of REXPACO-based algorithms:
⇒ accounting for the statistics Ω of the nuisance f ⇐

REXPACO (Flasseur+, 2021): for ADI observations
robust REXPACO (Flasseur+, 2022): temporal robustness
REXPACO ASDI (Flasseur+, sub., ArXiv): for ASDI observations 6 / 25

https://www.aanda.org/articles/aa/pdf/2021/07/aa38957-20.pdf
https://www.researchgate.net/publication/363067829_Multispectral_image_reconstruction_of_faint_circumstellar_environments_from_high_contrast_angular_spectral_differential_imaging_ASDI_data
https://arxiv.org/pdf/2109.12644.pdf
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Regularized reconstruction: framework
Model of the observed intensity

r = Ax+ f ,

r (RN×T ): total intensity in ADI stack of T frames with N pixels,
x
(
(R+)M

)
: unknown object flux,

A (RM → RN×T ): linear operator describing the image formation,
f (RN×T ): noise; f � Ax, nonstationary, fluctuates over time.

Regularized reconstruction of the object flux
Resolution of an inverse problem:

x̂ = arg min
x>0

{C (r,x,A,Ω,µ) = D(r,Ax,Ω) + R(x,µ)} ,

D(r,Ax,Ω): data-fidelity term, depends on Ω statistics of f ,
R(x,µ): regularization term, depends on hyperparameters µ.
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Modeling of the nuisance component
Statistical model

Multi-variate Gaussian (Ω = {m,C})
⇒ f = m+ u where u ∼ N (0,C)

Co-log-likelihood:
D(r,Ax,Ω) = T

2 log det C + 1
2

T∑
t=1
‖rt −m− [Ax] t‖2C−1 .

Statistical learning
Estimators from the maximum likelihood:

m̂ = 1
T

∑T
t=1(rt − [Ax] t) ,

Ĉ = 1
T

∑T
t=1(rt −m− [Ax]t)(rt −m− [Ax]t)> .

Limited number T of samples to estimate Ĉ
The estimators m̂ and Ĉ depend on the unknown object flux x
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Local learning of PAtch COvariances

REXPACO: Reconstruction of Extended features
by learning of PAtch COvariances

REXPACO principle
Accounts for background fluctuations

Ω̂n = {m̂n, Ĉn}

Local modeling: K ' 80 pix/patch
⇒ local adaptivity ⇐

Reconstruction: all patches

In spite of local modeling, K ≈ T
⇒ A form of regularization on covariances should be enforced
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Local learning of PAtch COvariances – shrinkage
Issue and proposed approach

Limited number of samples (T ≈ K) to estimate Cn (K ×K)
⇒ Ĉn is very noisy or rank deficient.

A form of regularization should be enforced.

Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]

⇒ A bias/variance tradeoff: automatic and locally adaptive.

with ρ̃n = tr(S̃2
n) + tr2(S̃n)− 2

∑K
k=1[S̃n]2kk

(T + 1)(tr(S̃2
n)−

∑K
k=1[S̃n]2kk) 10 / 25



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Local learning of PAtch COvariances – shrinkage
Issue and proposed approach

Limited number of samples (T ≈ K) to estimate Cn (K ×K)
⇒ Ĉn is very noisy or rank deficient.

A form of regularization should be enforced.

Shrinkage approach [Ledoit & Wolf, (2004)]; [Chen et al., 2010]

⇒ A bias/variance tradeoff: automatic and locally adaptive.

with ρ̃n = tr(S̃2
n) + tr2(S̃n)− 2

∑K
k=1[S̃n]2kk

(T + 1)(tr(S̃2
n)−

∑K
k=1[S̃n]2kk) 10 / 25



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Modeling of the nuisance component

Statistical model
Multi-variate Gaussian (Ωn = {mn,Cn})
⇒ fn = mn + un where un ∼ N (0,Cn)

Co-log-likelihood:
D(r,Ax,Ω) = T

2

N∑
n=1:K

log det C̃n + 1
2

N∑
n=1:K

T∑
t=1

‖ Pn (rt − m̂− [Ax] t)‖2
C̃−1

n
.

Pn : patch-extractor operator around pixel n

Statistical learning

m̂ = 1
T

∑T

t=1(rt − [Ax] t) ,

S̃n = 1
T

∑T

t=1

(
Pn (rt −m− [Ax] t)

)(
Pn (rt −m− [Ax] t)
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,

C̃n = (1− ρ̃n) S̃n + ρ̃n F̃n .
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Unbiased estimation of the nuisance statistics

Alternate/joint strategy
Statistics biased by the object
⇒ Alternate/joint estimation

of Ω̂ and x̂

no joint estimation joint estimation
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Unsupervised regularization & optimization

Unsupervised estimation of µ with SURE

R(x, µ ) = µ`1

N∑
n=1
|xn|+ µsmooth

N∑
n=1

√
||∆nx||22 + ε2 .

SURE; unbiased estimator of MSE [Stein (1981)]
⇒ accounting for the local statistics Ω of f :

SURE(µ) =
∑
n∈P

∑
t

||rn,t − m̂n − [A vµ(r)] n,t||2
σ̂−2

n,t
Ĉ−1

n
+ 2 tr

(
A Jvµ(r)

)
−N ,

...BUT no closed-form expression of Jvµ(r), the Jacobian of vµ w.r.t r.
Evaluation of tr

(
A Jvµ(r)

)
with a black-box approach [Ramani (2012)]:

tr
(
A Jvµ(r)

)
≈ ξ−1b>A [vµ(r + ξb)− vµ(r)] ,

Optimization

bound constraints: x > 0
differentiable objective function

⇒ solved with VMLMB [Thiébaut (2002)]
13 / 25
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Unsupervised regularization & optimization
in

je
c
ti

o
n

s
 o

n
 r

e
a
l 
d

a
ta

(H
IP

 8
0
0
1
9
)

-6
4
.5

re
a
l 
d

a
ta

 (
H

R
 4

7
9
6
)

14 / 25



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Unsupervised regularization & optimization
in

je
c
ti

o
n

s
 o

n
 r

e
a
l 
d

a
ta

(H
IP

 8
0
0
1
9
)

re
a
l 
d

a
ta

 (
H

R
 4

7
9
6
)

-6
4
.5

14 / 25



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Comparison with cADI/PCA on VLT/SPHERE IRDIS data

-3 4.5-5 -5 1.51.5 1.8

3.2 -5-54.5

statistical model ⇒ residual stellar leakages are reduced
image formation model ⇒ non-physical artefacts are reduced

15 / 25
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3.2 -5-54.5

3.2 -5-54.5

statistical model ⇒ residual stellar leakages are reduced
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image formation model ⇒ angular resolution is improved
(deconvolution)
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Unmixing point-like and extended features

3.20 -5 3.20 -5

-5 50 3.20 -5
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Unmixing point-like and extended features
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Improving the robustness by temporal weighting
local + data-driven identification and neutralization of outliers

⇒ impact of large fluctuations is decreased, robustness is improved 17 / 25
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Improving the robustness by temporal weighting
PD

S 
70

 (2
01

8-
02

-2
4)

3.2 -5

robustness benefits:

statistical model ⇒
better rejection of
nuisance comp.

statistical model ⇒
better reconstruct.
of fine structures at
short separations

see Maud’s focus for
more results 18 / 25
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Joint multi-spectral processing: general principle

19 / 25
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Comparison with cADI/PCA on VLT/SPHERE IFS data

0.30''

pr
op
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ed

0.15''

MWC 758

0.30''

SAO 206462

0.30''

HR 4796

PC
A 

cA
D

I /
 

0.30''

MWC 758SAO 206462

0.30''

PDS 70

statistical model ⇒ residual stellar leakages are reduced
image formation model ⇒ non-physical artefacts are reduced

image formation model ⇒ angular resolution is improved
spectral diversity ⇒ the key for disks with a circular symmetry

20 / 25
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VLT/SPHERE IFS reconstructions - other targets

IFSIRDIS IRDIS

21 / 25
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A focus on MAYONNAISE, MUSTARD algorithms
MAYONNAISE (Pairet 2021+)

inverse problem approach, with specific regularization terms,
no statistical modeling of the nuisance component

Model of the observed intensity
r = A (xd + xp) + f ,

r (RN×T ): total intensity in ADI stack of T frames with N pixels,
x = xd + xp

(
(R+)M

)
: unknown object flux (disk + planets),

A (RM → RN×T ): image formation model (rotation + blur),
f (RN×T ): noise; f � Ax, nonstationary, fluctuates over time.

Regularized reconstruction
{x̂d, x̂p, f̂} = arg min

xd,xp,f
{L (r −A (xd + xp)− f) + R(xd,xp)} ,

L := Huber loss function ; R := regularization term (f is low rank, xp

is sparse in space domain, xd is sparse in transformed domain).
22 / 25

https://arxiv.org/pdf/2008.05170.pdf
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A focus on MAYONNAISE, MUSTARD algorithms

PDS 70

SAO 206462HR 4796

Courtesy: extracted from (Pairet 2021+) 23 / 25

https://arxiv.org/pdf/2008.05170.pdf
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A focus on MAYONNAISE, MUSTARD algorithms
MUSTARD (Juillard+, 2022, in prep.)

MAYO with decomposition of nuisance component in two terms

Coutesy: S. Juillard, extracted from a presentation available at:
https://orbi.uliege.be/bitstream/2268/291212/1/PDS70-%20resume.pdf 24 / 25

https://orbi.uliege.be/bitstream/2268/291212/1/PDS70-%20resume.pdf
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Conclusions
Different classes of post-processing algorithms for disk imaging:

subtraction (cADI, PCA, TLOCI),
artifacts mitigation (iterative PCA, data imputation strategy)
reference differential imaging,
parametric approaches with a disk model,
non-parametric approaches with an image formation model.

Advanced algorithms allows:
detection at better contrasts,
better preservation of the disk morphology and photometry

reduce classical artifacts (e.g., self-subtraction),
reduce stellar leakages,

unmixing of point-like and extended sources.

Specificities of REXPACO-based algorithms:
encompass a statistical modeling of the nuisance component,
spectral diversity is the key for circulo-symmetric disks.

25 / 25
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Classical algorithms
Marois+ 2006, “Angular differential imaging: a powerful high-contrast imaging technique”, APJ, 641(1), 556 (cADI)
Marois+ 2014, “GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging”, SPIE
Adaptive Optics Systems, 9148 (TLOCI)
Soummer+ 2012, “Detection and characterization of exoplanets and disks using projections on Karhunen–Loève
eigenimages”, APJ Letters, 755(2), L28 (KLIP/PCA)
Artifacts mitigation without reference
Pairet+ 2018, “Reference-less algorithm for circumstellar disks imaging”, ArXiv (iterative PCA)
Ren+ 2020, “Using data imputation for signal separation in high-contrast imaging”, APJ, 892(2), 74 (data imputation)
Artifacts mitigation with reference
Gerard+ 2016, “Planet detection down to a few λ/D: an RSDI/TLOCI approach to PSF subtraction”, SPIE Adaptive
Optics (RSDI/TLOCI)
Ren+ 2018, “Non-negative matrix factorization: robust extraction of extended structures”, APJ, 852(2), 104 (NMF)
Xuan+ 2018, “Characterizing the performance of the NIRC2 vortex coronagraph at WM Keck Observatory”, APJ, 156(4),
156 (RDI ADI on KECK/NIRC2 data)
Ruane+ 2019, “Reference star differential imaging of close-in companions and circumstellar disks with the NIRC2 vortex
coronagraph at the WM Keck Observatory”, APJ, 157(3), 118 (RDI ADI on KECK/NIRC2 data)
Wahhaj+ 2021, “A search for a fifth planet around HR 8799 using the star-hopping RDI technique at VLT/SPHERE”,
A&A, 648, A26 (star-hopping RDI on VLT/SPHERE data)
Disk models
Milli+ 2017, “Near-infrared scattered light properties of the HR 4796 A dust ring - A measured scattering phase function
from 13.6° to 166.6°”, A&A, 599, A108 (disk model fitting on HR 4796 data)
Esposito+ 2013, “Modeling self-subtraction in angular differential imaging: Application to the HD 32297 debris disk”, APJ,
780(1), 25
Mazoyer+ 2020, “A forward modeling tool for disk analysis with coronagraphic instruments”, SPIE Ground-based and
Airborne Instrumentation for Astronomy, 11447 (DiskFM: forward-backward modeling for disk)
Inverse problems
Pairet+ 2021, “MAYONNAISE: a morphological components analysis pipeline for circumstellar discs and exoplanets
imaging in the near-infrared”, MNRAS, 503(3) (MAYONNAISE)
Julliard+ 2022, “A spiral arm in the protoplanety disk PDS70?” (presentation) (MUSTARD)
Flasseur+ 2021, “REXPACO: An algorithm for high contrast reconstruction of the circumstellar environment by angular
differential imaging”, A&A, 651, A62 (REXPACO)
Flasseur+ 2022, “Multispectral image reconstruction of faint circumstellar environments from high contrast angular spectral
differential imaging (ASDI) data”, SPIE Adaptive Optics Systems, 12185 (robust REXPACO)
Flasseur+ (sub), “Joint unmixing and deconvolution for angular and spectral differential imaging”, ArXiv (REXPACO ASDI)

aa

https://iopscience.iop.org/article/10.1086/500401/pdf
https://arxiv.org/pdf/1407.2555.pdf
https://arxiv.org/pdf/1407.2555.pdf
https://iopscience.iop.org/article/10.1088/2041-8205/755/2/L28/pdf
https://iopscience.iop.org/article/10.1088/2041-8205/755/2/L28/pdf
https://arxiv.org/pdf/1812.01333.pdf
https://iopscience.iop.org/article/10.3847/1538-4357/ab7024/pdf
https://arxiv.org/pdf/1609.08692.pdf
https://arxiv.org/pdf/1609.08692.pdf
https://iopscience.iop.org/article/10.3847/1538-4357/aaa1f2/pdf
https://iopscience.iop.org/article/10.3847/1538-3881/aadae6/pdf
https://iopscience.iop.org/article/10.3847/1538-3881/aadae6/pdf
https://iopscience.iop.org/article/10.3847/1538-3881/aafee2/pdf
https://iopscience.iop.org/article/10.3847/1538-3881/aafee2/pdf
https://www.aanda.org/articles/aa/pdf/2021/04/aa38794-20.pdf
https://www.aanda.org/articles/aa/pdf/2021/04/aa38794-20.pdf
https://www.aanda.org/articles/aa/pdf/2017/03/aa27838-15.pdf
https://www.aanda.org/articles/aa/pdf/2017/03/aa27838-15.pdf
https://iopscience.iop.org/article/10.1088/0004-637X/780/1/25/pdf
https://iopscience.iop.org/article/10.1088/0004-637X/780/1/25/pdf
https://arxiv.org/pdf/2012.06790.pdf
https://arxiv.org/pdf/2012.06790.pdf
https://arxiv.org/pdf/2008.05170.pdf
https://arxiv.org/pdf/2008.05170.pdf
https://orbi.uliege.be/bitstream/2268/291212/1/PDS70-%20resume.pdf
https://www.aanda.org/articles/aa/abs/2021/07/aa38957-20/aa38957-20.html
https://www.aanda.org/articles/aa/abs/2021/07/aa38957-20/aa38957-20.html
https://www.researchgate.net/publication/363067829_Multispectral_image_reconstruction_of_faint_circumstellar_environments_from_high_contrast_angular_spectral_differential_imaging_ASDI_data
https://www.researchgate.net/publication/363067829_Multispectral_image_reconstruction_of_faint_circumstellar_environments_from_high_contrast_angular_spectral_differential_imaging_ASDI_data
https://arxiv.org/pdf/2109.12644.pdf


Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Multi-instruments

NACO (L') IRDIS (H2)

IFS (YJH)



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Multi-epochs



Introduction Post-processing algorithms Focus on inverse problem approaches Conclusions

Reconstruction framework – data fidelity
Data fidelity term

Gaussian Scale Mixture (Ωn,t = {mn,σn,t,Cn})
⇒ fn,t = mn + σn,t un where un ∼ N (0,Cn)

Co-log-likelihood:
D(r, Ax, Ω) =

1
2

∑
n∈P

∑
t

log det σ̂2
n,t Ĉn +

1
2

∑
n∈P

∑
t

‖v̂n,t‖2
σ̂−2

n,t
Ĉ−1

n

,

v̂n,t = rn,t − m̂n − [Ax] n,t: residual intensity patch around pixel n.

Statistical background modeling
Scaling factor: σ̂2

n,t = (1/K) v̂n,t Ĉ−1
n v̂>n,t

Sample mean: m̂n = 1
T

∑T

t=1 σ̂
−2
n,t (rn,t − [Ax] n,t) ,

Sample covariance: Ŝn = 1
T

∑T

t=1 σ̂
2
n,t v̂n,t v̂

>
n,t ,

Shrunk covariance: Ĉn = (1− ρ̂n) Ŝn + ρ̂n F̂n = Ŵn � Ŝn .

The statistics Ω depends on the sought object x
⇒ alternate or hierarchical estimation of Ω and x is mandatory
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Reconstruction framework – data fidelity
Data fidelity term

Gaussian Scale Mixture (Ωn,t = {mn,σn,t,Cn})
⇒ fn,t = mn + σn,t un where un ∼ N (0,Cn)

Co-log-likelihood:
Djoint(r, Ax, Ω) =

1
2

∑
n∈P

∑
t

log det σ̂2
n,t(x) Ĉn(x)

+
1
2

∑
n∈P

tr

[
Ĉ−1
n (x)

(
Ŵn �

∑
t

σ̂−2
n,t(x) v̂n,t(x) v̂n,t(x)>

)]
,

v̂n,t(x) = rn,t − m̂n(x)− [Ax] n,t: residual intensity patch around pixel n.

Statistical background modeling
Scaling factor: σ̂2

n,t(x) = (1/K) v̂n,t
(

Ŵn � Ĉ−1
n

)
v̂>n,t

Sample mean: m̂n(x) = 1
T

∑T

t=1 σ̂
−2
n,t (rn,t − [Ax] n,t) ,

Sample covariance: Ŝn(x) = 1
T

∑T

t=1 σ̂
2
n,t v̂n,t v̂

>
n,t ,

Shrunk covariance: Ĉn(x) = (1− ρ̂n) Ŝn + ρ̂n F̂n = Ŵn � Ŝn .
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