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Some specifications for future detection / characterization algorithms

- building a model from several datasets 3 additional diversity needed
- See yesterday'’s discussions about RDI... 1077 - deep PACO
...and today’s discussions o i
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- deriving statistically grounded detection score & associated uncertainties
- including our knowledge about the problem (model-based approaches)

- Including a form of joint detection/estimation
- See today’s discussions

- exploiting the metadata
- See today'’s discussions



Agenda

Beyond black-box approaches

- control of the uncertainties (short review of review papers, Olivier, Théo = 10 min)
- model-based learning (review of review papers, Théo, Olivier = 30+ min) - a focus on algorithm unrolling
+ learning a prior (plug and play approaches) on the nuisance component and/or on the objects of interest. T

- The example of conventional imaging.

- how to exploit these methods for your problems?: discussions & ideas ('ALL! = 20-30min)

Exploitation of the metadata

- presentation of the available metadata (Julien = 15 min)

- review of a post-processing algorithm for exoplanet detection & characterization exploiting metadata (Olivier = 15 min)

- discussions & ideas (!ALL! = 30 min)



Different sources of uncertainties
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Different sources of uncertainties

classification

regression

data uncertainty

@ Training data

model uncertainty

@ Training data

out-of-distribution

@ Training data
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Different types of methods to estimate the uncertainties

e Gradient Meirices'

o Additional Network
for Uncertainty?

e Distance to Training

Data®

» Augmentation
Policies™

® Prior Networks®*

o Evidential Neural
Networks’

e Gradient penalties’

® Sub-Ensembles®
® Batch-Ensembles™

o Application of
Variational Inference®

e Stochastic Variational
Inference’

e Normalizing flows!”

» Monte-Carlo

Dropout'!

& Model Pruning®!
e Distillation™

 Original works ' e Diagonal Information

# Stochastic MCMC"* Matrix o Random TInitialization/

o Theoretic Advances™ ¢ Kronecker- Data Shuffling'®
Factorization'®

e Sparse Information
Matrix "

e Bagging/ Boosting'"’
e Single Training Run®
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Different types of methods to estimate the uncertainties

@ Deterministic
Methods

Bayesian Neural Networks

@ Ensemble Methods

@ Test-Time Data
Augmentation
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Single Deterministic

Bayesian Methods

Ensemble Methods

Different types of methods to estimate the uncertainties

Test-Time Data
Augmentation

Description

Description of Model
Uncertainties

Need changes on
existing networks
Sensitivity to
initialization and
parameters of training
process

Number of networks

trained

Computational effort
during training

Memory consumption
during training

Number of inputs per
prediction

Forward passes per
prediction

Evaluated modes

Computational effort
during inference

Memory Consumption -
Inference

Networks
Approaches that receive an
uncertainty — quantification
on a prediction of a
deterministic neural
network.

No

Depends on method

High (in general)

Low

Low

Single

Low

(One forward pass, possibly
some minor additional ef-
fort for uncertainty quantifi-
cation)

Low

Model parameters are ex-
plicitly modeled as random
variables. For a single for-
ward pass the parameters
are sampled from this distri-
bution. Therefore, the pre-
diction is stochastic and
cach prediction is based on
different model weights.

Yes

Yes

Low
(Usage of uninformative
priors possible)

High

Low

Several

Single

High

(sampling is either needed
for explicit approach or for
the approximation of in-
tractable formulas)

Low

The predictions of several
models are combined into
one prediction. A variety
among the single models is
crucial.

No

Yes (retrain several times)

Low

Several

High

High

Several

Multiple
High

(Several models need to be
evaluated)

High

The prediction and uncer-
tainty quantification at in-
ference is based on several
predictions resulting from
different augmentations of
the original input sample.

No

Low

Low

Low

Several

Several

Single

High

(Several augmentations and

forward passes are per-
formed)

Low
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Approach followed
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Figure 1. Uncertainties in CNNs: Traditional deep networks
represent both activations and outputs as deterministic point esti-
mates. @ In this work, we explore the replacement of outputs
by probabilistic output layers. To go one step further, we also
consider replacing all intermediate activations by distributions.

Gast+, « Lightweight Probabilistic Deep Networks », CVPR 2018



Approach followed

deep PACO: a variant for joint detection and estimation

Regression task: predicting images of flux a + confidence &
Sup. training: M triplets {data,, ; inj. locations yCT, inj. flux o
Link between detection and estimation: ST\TFQm = Quy, /0., (N-pixels each)
= metric to control detection relevance (PFA, PD).
Combined-loss for joint detection and estimation:

M
(= Z gdet.(gm; yEnT) + )\gest.(amv a'm,; afnT) with:

GT

m

m=1
loer. = dice(Gpm, YO ), st. Gm = SNR,, > 7 (thresholded SNR map)
N [/~ GT 2
Umn — QO p ~ . o~~~
lost. = Z (@m, — ) +1og(0m.n) (max. lik. a~ A (a,o))
n—1 m,mn

Robustness wrt. 7: £ = Zk wil,, s.t. zk wi =1
e.g. {(t,wg)} ={(r1 =4,w; =0.8), (12 =2, w2 =0.1), (13 = 6, w3 =0.1)}.
Expected properties:

@ joint detection/estimation,
@ detection precision/recall rewarded by {det.

® « accuracy rewarded by lest., o accuracy rewarded by {gec.,

@ o too conservative (large) penalized by lgec. and lest..
@ detection score statistically grounded,

® model can be built from several datasets. 24/37




Interaction massive data < physics-based simulations

exploit theoretical models to generate a priori information through Plug and Play methods

reconstruction (PCA)

& o
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— a way to improve the reconstructions by including some physics-based information at a
macro level (smoothness, continuity etc.)

Open question: Inductive bias ?
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