Atmospheric characterization of exoplanets with the medium resolution spectrometer on JWST/MIRI

cnes §

Mathilde MÂLIN

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysiqu

Direct Imaging

<u>A need for mid-IR data</u>

- \rightarrow Contrast star/planet reduce
- \rightarrow Emission of the young giant planets
- \rightarrow Complementary to near IR data
- \rightarrow Access to molecular species: H₂O, CO, CO_2 , CH_4 , NH_3 , PH_3 , HCN, H_2S
- \rightarrow Planetary formation

Wavelength [µm]

4.30

Direct Imaging

<u>A need for mid-IR data</u>

- \rightarrow Contrast star/planet reduce
- \rightarrow Emission of the young giant planets
- \rightarrow Complementary to near IR data
- \rightarrow Access to molecular species: H₂O, CO, CO₂, CH₄, NH₃, PH₃, HCN, H₂S
- \rightarrow Planetary formation

 \rightarrow Need spatial instrument

JWST - MIRI

<u>MIRI</u> : Mid-IR Instrument

 \rightarrow Spectral range from 5 to 28 μm

First data available for direct imaging above 5 µm!

 \rightarrow Advantages of spatial instruments

Observing modes: Imager, Coronagraph, Low Resolution Spectrometer and Medium Resolution Spectrometer

<u>MIRI coronagraphs:</u> First imaged exoplanet (HIP 65426 b)

Carter et al. (2022)

MRS : Medium Resolution Spectrometer

- > Integral field spectrometer with a resolution up to $\lambda/\Delta\lambda = 3700$
- > 4 channels ; 3 observations needed to observe the full wavelength range
- > Slicer to dispersed the scene onto the detectors

JWST Data reduction

Detector Processing \rightarrow process raw ramps data into uncalibrated slopes data.

Spectroscopic Processing / Calibration + additional residual fringe step

Detector image

6

Cube reconstruction Combine exposure and dither position

MRS : First targets

<u>GTO target :</u>

- Brown Dwarfs : WISE J1828, WISE J0458+6434, WISE J085510.83, WISEPC J121756, Eps Ind Ba+Bb, WISEPA J173835.53
- **Exoplanets** : 2M 1207 b, PSO J318, ROSS 458 AB c

ERS 1386 :

> VHS 1256 b

How to observe companions that are less bright and closer to their star?

Molecular mapping method

- > Disentangle **spectrally and spatially** the light from the star and that of the planet
- > Cross-correlation with a synthetic spectrum
- Detect and retrieve molecules

Molecular mapping method

- > Disentangle **spectrally and spatially** the light from the star and that of the planet
- > Cross-correlation with a synthetic spectrum
- Detect and retrieve molecules

Molecular mapping on MRS/MIRI data

Planet : 1000 K - R = 1 R_{jup} Star : 6000 K (BT-NextGen models) Separation = 1.8 ''

Using Exo-REM models : 1D radiative – convective equilibrium model (*Baudino et al. 2015, Charnay et al. 2018*)

S/N measurement (previous methods)

<u>Signal of the planet</u>: peak of the CCF at the position of the planet; averaging CCF (circular aperture centered on the planet position).

<u>Noise</u>: annulus away from the peak signal at RV away from the planet in the CCF; sigma of the gaussian distribution of spaxels away from the planet.

 \rightarrow Mostly based on the CCF

Main issues :

- Planet signal is not focused in one spaxel
- > Autocorrelation (due to harmonics in molecular spectral) can be dominant in the CCF
- > Noise in correlation maps is not always gaussian

Autocorrelation in the MRS wavelength range

Comments on the correlation pattern

Basic simulations :

- Center of the correlation pattern does not correspond perfectly to the planet's position (mostly of the star is close)
- \succ The correlation pattern is not a PSF
- Shape and size of the correlation pattern depends on several parameters : PSF, strength of the correlation, noise.
- > Noise is not necessarily gaussian

\rightarrow Difficult to identify the size of the correlation pattern

S/N measurement

<u>Method based on the shape of the correlation pattern (example on 2 simulations) :</u>

High noise level

Low noise level

Radial azimuthal profile of the correlation pattern

- define a correlation radius (r_cc) based on the noise level
- define a threshold values to take into account only the highest values of correlation
 - Noise: standard deviation of the correlation values away from the planets (**o**)
 - Signal : sum on the correlation pattern (C_i)

$$S/N = \frac{\sum_i C_i}{\sqrt{N_S} \times \sigma}$$

Parametric study

Impact of the spectral type

Parametric study

Apply on known directly imaged planets

Planetary systems	Planet temperature	Star spectral type	Separation (based on June 2023 astrometry)
GJ504	550 K	G0V	2.5"
HR8799	b : 1100 K c, d, e : 1200 K	A5V	1.72′′ 0.94′′ – 0.7′′ – 0.38
Beta Pictoris	1700 K	A6V	0.55″
2M1207	1000 K or 1600 K	M8	0.78″
HD 106906	1800 K	F5V	7.11″
HD 95086	800 K or 1400K	A8III	0.63″
HIP 65426	1550 K	A2V	0.81″
51 Eri	750 K	FOIV	0.34"
GJ 758	600 K	G9V	1.36″

Apply on known directly imaged planets

Planetary systems	Planet temperature	Star spectral type	Separation (based on June 2023 astrometry)
GJ504	550 K	G0V	2.5″
HR8799	b : 1100 K c, d, e : 1200 K	A5V	1.72′′ 0.94′′ – 0.7′′ – 0.38
Beta Pictoris	1700 K	A6V	0.55″
2M1207	1000 K or 1600 K	M8	0.78″
HD 106906	1800 K	F5V	7.11″
HD 95086	800 K or 1400K	A8III	0.63″
HIP 65426	1550 K	A2V	0.81″
51 Eri	750 K	FOIV	0.34"
GJ 758	600 K	G9V	1.36″

GJ 504

High contrast Image (Subaru/HiCIAO)

Simulation with MIRISim

Kuzuhara et al. (2013)

<u>GJ 504</u>

- Star G type : 6200 K
- System at 17.56 pc
- Age uncertain : 21 Myr to 4 Gyr
- Planet : 550 K
- Separation : 43.4 AU
 2.5 arcsec

Simulation Band 1A

GJ 504

<u>Simulation and correlation maps :</u>

Globally in agreement with Patapis et al. (2021)

Exo-REM models

2M 1207

Hypothesis 1 : Planet at 1600 K and $R = 0.5 R_{jup}$ (Patience et al. 2010)

- Brown Dwarf : 2600 K
- System at 52.4 pc
- Young system : 8 Myr
- Separation : 42 AU –
 0.78 "

Mâlin et al. (subm)

2M 1207

Hypothesis 2 : Planet at 1000 K and $R = 1.5 R_{jup}$ (Barman et al. 2010)

Detection of molecules as indicators for the temperature of the planets

.

HR 8799

4 planets

- Star: 7600 K
- System at 39.4 pc
- Young system: 8 Myr
- Planets : 1000 K (planet b) 1100 K (planet c d e)
- Separation : 68 AU – 1.72" 43 AU – 0,95" 27 AU – 0,70" 16 AU – 0,39"

Mâlin et al. (subm)

Correlation with grids of models

Exemple on the best target GJ 504 b

Correlation value at the planet's position when correlating the data with a grids of Exo-REM models

Still detect the planet
with similar model as
the one in input
Not very sensitive to
recover atmospheric
parameters

Extraction of a HF spectrum at the planet's position

<u>Contours</u> : 3-sigma, 2-sigma, 1-sigma

Conclusion

- > MIRI/MRS is able to detect molecules (H_2O , CO, NH_3 , CH_4 , HCN, PH_3) at angular separation about > 1".
- Very efficient for planets colder than T < 1500 K Complementarity with coronagraphy</p>
- We have developed tools to simulate and analyze different known systems in direct imaging to get ready for cycle 2 of JWST GO observations. Our parametric study allows to anticipate the ability to characterize planets yet to be detected.

> <u>Perspectives</u>:

- Future methods of stellar subtraction should improve the performance of detection and characterization of planets < 1".
- Better define the constraints on the atmosphere (bayesian analysis, complementarity with coronagraphic data from GTO MIRI)
- Better understand the correlation pattern and how it varies (S/N measurement)