

des exoplanètes

25/12/2021 : lancement Ariane V

~*0*7

Team @ LESIA (since 2002) **Daniel Rouan Anthony Boccaletti Pierre Baudoz Jacques Baudrand Pierre Riaud Jean-Michel Reess Olivier Dupuis** Jérôme Parisot Napoléon Nguyen Tuong **Claude Collin**

MIRI's coronagraph concept

A coronagraph is designed to attenuate the star light

combines a mask in the focal plane with a "Lyot" stop in the pupil

1. Coronagraphic masks in the entrance focal plane of MIRI

2. Lyot stops+IR filters in the filter wheel

Rouan et al. 2000 **Boccaletti et al. 2005** Baudoz et al. 2006 **Boccaletti et al. 2015**

MIRI's coronagraph concept

FQPM are made in Germanium, using Reactive Ionic Etching

MIRI's coronagraph concept

Sensitivity vs. planetary spectra

Interferometry measurements from NASA XRCF

NIRCam wavefront sensing on 2022-06-21

alignment and curvature with

actuators-six at the hexapod

hexapod ends pull or push correct alignment with the

one electronics box. This box sends signals to the actuators to steer, position, and control

MIRI's Performance on sky : PSF F1065C **F1140C** F1550C F2300C

data

MIRI's performance on sky: CORONO F1065C **F1140C F1550C** F2300C

75 100 125 1

50

25

data

Coronagraphic images and raw contrasts

FQPM : good agreement Lyot : discrepancy (bright horizontal diffraction)

MIRI's performance on sky : SGD

Concept of Small Grid Dither

MIRI's performance on sky : RDI

F1065C

F1140C

F1550C

direct subtraction & PCA

1e-5

MIRI's performance on sky : contrast F1065C

Contrasts at F1065C

MIRI's performance on sky : contrast F1140C

Contrasts at F1140C

MIRI's performance on sky : contrast F1140C

MIRI's performance on sky : contrast F1550C

Contrasts at F1550C

MIRI's performance on sky : ERS / HIP 65426

Chauvin et al. 2017

SPHERE

0.04'' @ 1.6µm

0.36" @ 11.40µm

F1140C

F1550C

0.49" @ 15.50µm

Exoplanetary systems to be observed in GTO

- HR 8799 bcd : 30 Oct- 9 Nov 2022
- GJ 504 b : 18 May 11 Jul 2023
- HD 95086 b : 5 Mar 6 Apr 2023
- HD 106906 b : 26 Jan 22 Mar 2023

circumstellar disks

ERS target : HD141569

van Boekel et al. 2017

Other planetary systems

Morphology of micron size dust particles to ALMA (thermal regime) and SPHERE (scattered light) observations grain properties (silicates feature)

faint debris disks : η Crv

Perrot et al. 2016

Exoplanetary systems to be observed in GTO HR8799 bcd

16-4

Kuzuhara et al. 2013

HR8799:30 Myr masses : 7, 10, 10, 10 M_J distance : 16, 24, 38, 68 AU 900 - 1000 K Marois et al. 2008, 2010

Marois et al. 2010

○ c

Exoplanetary systems to be observed in GTO

