Inversion of Exoplanet Spectra @ COBREX from Bayesian Inference to Machine Learning Mickaël Bonnefoy (IPAG-CNRS)

Dev. Team: S. Petrus (U. Valparaiso), P. Palma-Bifani (OCA-Lagrange), P. KOMBA-BETAMBO (LESIA-CNRS), M. Bonnefoy (IPAG-CNRS), G. Chauvin (OCA-Lagrange), A.-M. Lagrange (LESIA-CNRS)

Motivation Formation tracers

The C/O ratio: formation location & accretion of solids [?]

Formation tracers

The ¹²CO/¹³CO ratio: thermal processing of solids @ formation [?]

Motivation Formation tracers

RETRIEVAL Chemical Cloud P-T profile Mixing species formation Sediment Chemical equilibrium ation Non-complex physics HR8799b Normalized flux 0.5 1.5 2,5 3.5 4.0 1.0 2.0 3.0 4.5 Wavelength (µm) HELIOS-R (Lavie et al. 2017)

The data drive the fit

Several tens of free-parameters

Retrieval models: <u>complex enough</u> <u>to reproduce the clouds</u> ?

<u>Several days</u> of computing time for data with thousands points

Models drive the fit

Fundamental parameters of the atmosphere (< 5 today)

Auto-consistent models

<u>Several hours</u> of computing time for data with thousands points

Bayesian Framework: posteriors, model selection

...but **time-consuming** (computation time explodes with dimensionality)

Bayesian Framework: posteriors, model selection

Bayesian Framework: posteriors, model selection

The nested sampling algorithm (alternative to MCMC)

Bayesian Framework: posteriors, model selection

- Accurate estimate of posterior distributions
- Allows to input prior information (flat, log, normal)
- Can account for correlated noise (covariance) and penalties

- Time consuming
- Non replicable inversion
- Do not relate data to constraints on free parameters

A versatile machine learning technique for regression & classification

A versatile machine learning technique for regression & classification

A versatile machine learning technique for regression & classification

Fig. 2.3 Split and leaf nodes. (a) Split node (testing). A split node is associated with a weak learner (or split function, or test function). (b) Split node (training). Training the parameters θ_j of node j involves optimizing a chosen objective function (maximizing the information gain I_j in this example). (c) A leaf node is associated with a predictor model. For example, in classification we may wish to estimate the conditional $p(c|\mathbf{v})$ with $c \in \{c_k\}$ indicating a class index.

A versatile machine learning technique for regression & classification

Original Framework

Application (code) : scikit-learn

Application (exoplanet atmospheres) :

Marquez-Neila et al. 2018 Oreshenko et al. 2019

HELA code

- 1 projection of spectrum errors on grids (monte-carlo)
- **1.5 reinterpolation of grids (finer mesh)**
- 2 training on grid (.fit)
- 3 regression (.predict)

Original Framework

Application (code) : scikit-learn

sklearn.ensemble.RandomForestRegressor

- Split function: mean-square error (variance reduction)
- Fit function: constant per partition

sklearn.ensemble.RandomForestRegressor

- Split function: mean-square error (variance reduction)
- Fit function: constant per partition

sklearn.ensemble.RandomForestRegressor

Outputs

predict(X)

[source]

Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest.

Parameters::	X : {array-like, sparse matrix} of shape (n_samples, n_features)
	The input samples. Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
	provided, it will be converted into a sparse csr_matrix.
Returns::	y : ndarray of shape (n_samples,) or (n_samples, n_outputs) The predicted values.

sklearn.ensemble.RandomForestRegressor

Outputs

The outputs are depends of the original grid mesh!

Modified framework (Criminisi et al. 2012):

Probabilistic linear regression post-partition

Application

Pros & cons

Pros & cons YSES1b

Pros & cons

AB Pic b

Method	$\mathrm{T}_{\mathrm{eff}}$	log g	M/H	γ	C/O	radial velocity	radius
	(K)	(dex)	(dex)		-	$(\mathrm{km.s^{-1}})$	$(\mathrm{R_{Jup}})$
ForMoSA-NS	2056^{+10}_{-11}	≤ 3.01	$-0.31\substack{+0.01\\-0.04}$	1.08 ± 0.01	$0.69\substack{+0.01\\-0.01}$	1.21 ± 0.01	1.21 ± 0.01
PCLRF	2121^{+40}_{-41}	$3.19\substack{+0.22 \\ -0.22}$	$-0.11\substack{+0.1\\-0.09}$	$1.03\substack{+0.006\\-0.004}$	$0.62\substack{+0.04\\-0.04}$	$11.4\substack{+4.4 \\ -4.8}$	$1.08\substack{+0.046\\-0.044}$
1		- 1			+0 15	⊢ 24	105
RF^{-1}	2200^{+0}_{-500}	$3^{+1}_{-0.5}$	$-0.3^{+0.0}_{-0.3}$	$1.03^{+0.02}_{-0.02}$	$0.55^{+0.15}_{-0.0}$	16^{+24}_{-24}	$1.0^{+0.5}_{-0.0}$

Table 1: Retrieved model parameters for AB Pic b using the Nested Sampling (ForMoSA-NS) and PCLRF approaches

Pros & cons

Pros

Computation time

training = 10min regression = 34s (Comparison : Bayesian = 1 nuit)

Application on massive datasets

Feature importance plot

Maximise S/N for key wavelengths

Cons

- We loose control on the model
- Treatment of uncertainties

Komba-Betambo et al. 2022 (in prep)