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Fig. 4.1 Regression: training data and tree training. (a) Training data points are shown
as dark circles. The associated ground truth label is denoted by their position along the
y coordinate. The input feature space is one-dimensional in this example (v = (x)). x is
the independent input and y is the dependent variable. A previously unseen test input
is indicated with a light gray circle on the x axis. (b) A binary regression tree. During
training a set of labeled training points S0 is used to optimize the parameters of the tree.
In a regression tree the entropy of the continuous densities associated with different nodes
decreases (their confidence increases) when going from the root toward the leaves.

Like classification the regression task is inductive, with the main
difference being the continuous nature of the output. Figure 4.1(a)
provides an illustrative example of training data and associated con-
tinuous ground-truth labels. In general, a training point is denoted as a
labelled pair (v,y). A previously unseen test input (unavailable during
training) is shown as a light gray circle on the x axis.

Formally, given a multi-variate input v we wish to associate a
continuous multi-variate label y ∈ Y ⊆ Rn. More generally, we wish
to estimate the probability density function p(y|v). As usual the
input is represented as a multi-dimensional feature response vector
v = (x1, . . . ,xd) ∈ Rd.

Why regression forests? A regression forest is a collection of ran-
domly trained regression trees (Figure 4.3). Just like in classification it
can be shown that a forest generalizes better than a single over-trained
tree.

A regression tree (Figure 4.1(b)) splits a complex nonlinear regres-
sion problem into a set of smaller problems which can be more easily
handled by simpler models (e.g., linear ones; see also Figure 4.2). Next
we specify the precise nature of each model component.

Figure 1.3: Best fitted spectrum (prior on the radius).
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The C/O ratio:  formation location & accretion of solids [?]
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The 12CO/13CO ratio:  thermal processing of solids @ formation [?]

Cowing et al. 2020

Formation tracers
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RETRIEVAL
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An embarrassment of riches

• 103 to 106 datapoints

• possibility of vast spectral libraries

Petrus et al. 2022

Komba-Betambo et al. in prep.
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Bayesian Framework: posteriors, model selection

…but  time-consuming (computation time explodes with dimensionality)
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Bayesian Framework: posteriors, model selection

Prior
Probability to have θ a priori. 

(Information that we have)

=  Pr(θ | D, M)
Pr(θ | M) x Pr(D | θ, M)

Pr(D | M)

Posterior
Probability to have θ a posteriori.

(Increased information that we have)

Likelihood
Probability that θ reproduce correctly D 

(Comparison M(θ) to D) 

Evidence
Probability that D give information related to M 

(Usefull for model to model comparison)

D : Data 
M : Model 
θ  : Parameters
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Bayesian Framework: posteriors, model selection
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Bayesian Framework: posteriors, model selection

Pros 👍 Cons 👎
• Accurate estimate of posterior 

distributions

• Allows to input prior information (flat, 

log, normal)

• Can account for correlated noise 

(covariance) and penalties

• Time consuming

• Non replicable inversion

• Do not relate data to constraints on free 

parameters
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A versatile machine learning technique for regression & classification
88 The Random Decision Forest Model

Fig. 2.1 Decision tree. (a) A tree is a set of nodes and edges organized in a hierarchical
fashion. A tree is a graph with no loops. Internal nodes are denoted with circles and terminal
nodes with squares. (b) A decision tree is a tree where each internal node stores a split
(or test) function to be applied to the incoming data. Each leaf stores the final answer
(predictor). Here we show an illustrative decision tree used to figure out whether a photo
represents an indoor or outdoor scene.

data, a property known as generalization [2, 11, 47]. Ensembles of trees
will be discussed extensively throughout this review. But let us first
focus on individual trees.

Tree data structure. A tree is a special type of graph. It is a data
structure made of a collection of nodes and edges organized in a hierar-
chical fashion (Figure 2.1(a)). Nodes are divided into internal (or split)
nodes and terminal (or leaf) nodes. We denote internal nodes with
circles and terminal ones with squares. All nodes have exactly one
incoming edge. In contrast to general graphs a tree cannot contain
loops. In this review we focus only on binary trees where each internal
node has exactly two outgoing edges.

Decision tree. A decision tree is a set of questions organized in
a hierarchical manner and represented graphically as a tree. For a
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90 The Random Decision Forest Model

2.2 Mathematical Notation and Basic Definitions

We denote vectors with boldface lowercase symbols (e.g., v), matrices
with teletype uppercase letters (e.g., M) and sets in calligraphic notation
(e.g., S).

Data point and features. A generic object, called data point, is
denoted by a vector v = (x1 ,x2, . . . ,xd) ∈ F , where the components
xi represent some attributes of the data point, called features, see
Figure 2.2(a) for an illustration. These features may vary from applica-
tion to application. For instance, in a computer vision application v
may correspond to a pixel in an image and the xis represent the
responses of a chosen filter bank at that particular location.

The number of features naturally depends on the type of the data
point as well as the application. In theory, the dimensionality of the
feature space F , d, can be very large, even infinite. In practice, it is often
not possible, and further not necessary, to extract all d dimensions of
v ahead of time. Instead we extract only a small portion of d on an as-
needed basis. Based on this let us formulate the features of interest that
are computed at any single time to be a subset selected from the set

Fig. 2.2 Basic notation. (a) Input data is represented as a collection of points in the d-
dimensional space defined by their feature responses (2D in this example). (b) A decision
tree is a hierarchical structure of connected nodes. During testing, a split (internal) node
applies a test to the input data v and sends it to the appropriate child. The process is
repeated until a leaf (terminal) node is reached (beige path). (c) Training a decision tree
involves sending all training data S0 into the tree and optimizing the parameters of the
split nodes so as to optimize a previously energy function. See text for details.
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of all possible features as φ(v) = (xφ1 ,xφ2 , . . . ,xφd′ ) ∈ Fd′ ⊂ F , where
d′ denotes the dimensionality of the subspace and φi ∈ [1,d] denote
the selected dimensions. In most applications, d can be very large but
the dimension of the subspace Fd′ is much smaller d′ ≪ d.

Test functions, split functions and weak learners. As explained
above a decision tree is a set of tests that are hierarchically organized.
In this review we use the terms “split function,” “test function,” and
“weak learner” interchangeably. Each node has associated a different
test function. We formulate a test function at a split node j as a function
with binary outputs

h(v,θj) : F ×T → {0,1}, (2.1)

where 0 and 1 can be interpreted as “false” and “true” respectively,
θj ∈ T denote the parameters of the test function at the jth split node.
The data point v arriving at the split node is sent to its left or right child
node according to the result of the test function (see Figure 2.3(a)).

Training points and training sets. The last definitions we intro-
duce are the training point and the training set. A training point is a
data point for which the attributes that we are seeking for are actually
known. In the example of the previous section a training set would be
a set of photos with associated “indoor” or “outdoor” labels. Based on

Fig. 2.3 Split and leaf nodes. (a) Split node (testing). A split node is associated with a
weak learner (or split function, or test function). (b) Split node (training). Training the
parameters θj of node j involves optimizing a chosen objective function (maximizing the
information gain Ij in this example). (c) A leaf node is associated with a predictor model.
For example, in classification we may wish to estimate the conditional p(c|v) with c ∈ {ck}
indicating a class index.
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y = f(x)

Dependent variable Feature vector
Atmospheric parameters Spectrum

N trees : bagging (Mont-Carlo)
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Original Framework 

Application (code) : scikit-learn

Application (exoplanet atmospheres) : Marquez-Neila et al. 2018
Oreshenko et al. 2019 HELA code

1 - projection of spectrum errors  on grids (monte-carlo)

2 - training on grid (.fit) 

3 - regression (.predict)

1.5 - reinterpolation of grids (finer mesh)
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Original Framework 

Application (code) : scikit-learn

Application (exoplanet atmospheres) : Marquez-Neila et al. 2018
Oreshenko et al. 2019 HELA code
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sklearn.ensemble.RandomForestRegressor

• Split function: mean-square error (variance reduction)
• Fit function: constant per partition

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
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• Split function: mean-square error (variance reduction)
• Fit function: constant per partition

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
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sklearn.ensemble.RandomForestRegressor

• Outputs

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
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sklearn.ensemble.RandomForestRegressor

• Outputs

HELA code (Marquez-Neila et al. 2018)

The outputs are depends of the 
original grid mesh!

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
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Modified framework (Criminisi et al. 2012): 

Probabilistic linear regression post-partition

p(y |x) =
1
T

T

∑
t

pt(y |x)

pt(y |x) ∼ ℱ
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Figure 1.3: Best fitted spectrum (prior on the radius).

4

Data: YSES1b exoplanet 
(Zhang et al. 2021)

Model grids: ATMO & Exo-REM



PCLRF (Komba-Betambo et al. 2022)HELA code (Marquez-Neila et al. 2018)
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Pros & cons



PCLRF (Komba-Betambo et al. 2022)ForMoSa code (Petrus et al. 2020)
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Pros & cons
YSES1b
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Pros & cons
YSES1b
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Pros & cons

AB Pic b
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Pros & cons
Pros

•Computation time
training = 10min
regression = 34s

(Comparison : Bayesian = 1 nuit)

•Feature importance plot
Maximise S/N for key wavelengths

Application on massive datasets

Cons
•We loose control on the model
•Treatment of uncertainties

Komba-Betambo et al. 2022 (in prep)


