Image processing and simple classification for filtering candidate exoplanets

(Hadrien* Cambazard, Nicolas* Catusse, Antoine Chomez, Anne-Marie Lagrange)

*G-SCOP Operations Research / Combinatorial Optimization

Intro and overview - key ideas

Question: Separate signal from noise to identify exoplanets

PACO [Flasseur et al 2018]:

Produce a probability distribution that can be interpreted as an SNR map

- Detection is performed a statistical test
- Avoid self-subtraction of signal
- Too many artifacts can be left and the candidates need to be filtered
- Filter based on SNR threshold

Intro and overview - key ideas

Overall process

- Input: Two SNR maps (H2 and H3) produced by PACO from a single 4d data-cube
- Approach based on supervised learning using sub-images:

Stamp / sub-image : 19 x 19 pixels

Stamps with **known** class (positive = contains a planet, negative = noise/speckle...)

• A classifier is built from a given SNR map and its usage is dedicated to this map

injected planets

> noise only

Positive samples (injections)

Supervised learning need positive/negative samples

SNR map with guaranteed noise (cube with inverted rotation)

Edge detection algorithm to target peaks of SNR 0

Generate a sub-image centered around each SNR peak •

Classification using a **logistic regression** (training with cross-validation)

$$\Theta(x) = \theta_0 + \theta_1 x_1 + \theta_1 x_2 + \dots + \theta_n x_n$$

 $\frac{1}{1 + e^{-\Theta(x)}}$ sigmoid
function 0

wikipedia

Use the classifier on *I to produce a* set of candidates

(4)

 Apply the classifier to stamps centered on any pixel of interest of the original SNR maps (e.g: snr H2 >= 2)

List of candidate stamps

Cluster the candidates by locations in the image

Nearby candidates are gathered in the same cluster

(4-5)

Current results

Current results – data sets

• Four stars:

- 1. HD 108767B
- 2. HIP 1993
- 3. HIP 12394
- 4. HIP 107345

• Two « Blind Tests » on the same 4 stars:

- 1. BT1: using the snr maps computed for the SHINE blind test (injected signals **different:** SNR versus physical)
- 2. BT2: designed by Antoine
- One real case study
 - 1. 51Eri

star name	lear	ning	BT1	BT2
	#pos	#neg	#pos	#pos
all	1026	77565	29	140
HD108767B	259	15621	7	26
HIP1993	253	15228	8	37
HIP12394	251	15636	6	39
HIP107345	263	31080	8	38

Todo: + weathe conditions

Current results – final performance

0

OF

BT2					
	Logistic regression				
Nb Inj	#Found	#Cand			
26	22	10			
37	33	0			
39	26	2			
38	38	0			
140	119	12			
	BT1				
7	5	11			
8	6	0			
6	4	2			
8	7	1			
29	22	14			
	Nb Inj 26 37 39 38 140 7 8 6 8 6 8 29	Logistic 1 Nb Inj #Found 26 22 37 33 39 26 38 38 140 119 7 5 8 6 6 4 8 6 6 4 8 7 29 22			

Table 2. Comparing the logistic regressiontection algorithm of PACO.

Current results – final performance

BT2

Cluster 7 - 8 stamps (No inj.) details

BT_HIP107345 Stamp56766_D69_L00_853_639 3.45

(853, 639) 154.0

HD108767B	7	5	11	
HIP1993	8	6	0	
HIP12394	6	4	2	
HIP107345	8	7	1	
Total	29	22	14	

Table 2. Comparing the logatic regressiontection algorithm of PACO.

0.7

Current results - final performance

	BT2						
	Logistic regression PACO threshold 3 PACO						reshold 5
	Nb Inj	#Found	#Cand	#Found	#Cand	#Found	#Cand
HD108767B	26	22	10	21	2	16	0
HIP1993	37	33	0	32	67	27	0
HIP12394	39	26	2	28	304	20	0
HIP107345	38	38	0	38	59	33	0
Total	140	119	12	119	432	96	0
				BT1			
HD108767B	7	5	11	6	145	3	0
HIP1993	8	6	0	8	85	3	0
HIP12394	6	4	2	5	293	2	0
HIP107345	8	7	1	8	61	2	0
Total	29	22	14	27	584	10	0

 Table 2. Comparing the logistic regression approach versus the default threshold detection algorithm of PACO.

- 1. The classifier is « conservative » with little false positive
- 2. Compared to an SNR threshold of 3, the classifier misses few planets but has less false positives
- 3. Compared to an SNR threshold of 5, the classifier detects significantly more planets

Note on methodology: results sent to Antoine for BT2 without us knowing the locations of the planets :)

Current results - Case study 51Eri = HIP21547

2

3

4

3

• One real case study, 4 epochs #Cand

- 1. HIP21547_20151225
- 2. HIP21547_20161212
- 3. HIP21547_20160115
- 4. HIP21547_20161211

 The classifier finds the planet 3 times over 4 with SNR of
 4.71 (20151225)
 5.28 (20160115)

- 2.69 (20161212)
- 2/3 cases are below a SNR threshold of 5

Cluster 2 - 10 stamps (No inj.) details							
HIP21547_20151225	Stamp9177_D-1_L00_715_686	4.71	(715, 686)	39.0	0.89		
HIP21547_20160115	Stamp17090_D-1_L00_713_687	5.28	(713, 687)	39.0	0.96	35	
HIP21547_20161212	Stamp4303_D-1_L00_711_688	2.69	(711, 688)	38.0	0.79		

Current results - further analysis

- 1. What is the **accuracy of features** i.e is the numerical value (significantly) different for negative and positive stamps ?
- 2. What are the features really needed to achieve the same level of performance ?
- 3. Performance of a single classifier (learnt over all snr maps) versus many classifiers (one for each snr map)
- 4. What is **the amount of data** (injections + noise map) needed to achieve the same level of performance ?
- 5. Tuning the prediction threshold (Precision / Recall)

Conclusion - Future work

- 1. A simple filtering of candidates identified by a statistical approach that avoids selfsubtraction (PACO):
 - image processing (edge detection)
 - logistic regression
 - clustering
- 2. SNR threshold => Prediction threshold
 - limited set of features (SNR, Gradient SNR, Airy figure, Speckle)
 - suited for multi-spectral information
- 3. Old school type of machine learning:
 - features have direct physical/optical meaning
 - frugal algorithm (few minutes) to the exception of injections
- A. More real case studies (usage on non injected planets)
- B. Multi-spectral data sets (> 2 wavelengths)
- C. Incorporate more physical/optical knowledge into features
- D. How to quantify the confidence level ?
- E. class imbalance and features not defined everywhere (e.g: speckle)
- F. Machine learning where the class is only known with a probability?

Additional results if needed

Current results - features accuracy

Fig. 7. Distribution of the values of 6 features computed over stamps of SNR ≥ 2 of the four main images (2069 positives, 18074 negatives).

- 1. Airy figure, SNR intensity, SNR gradient are similarly correlated to the class
- 2. The speckle feature does not seem very discriminative

Current results - features accuracy - Speckles

Fig. 8. Distribution of the MeanSpec feature for three selected subsets of stamps respectively from left to right: (1) all stamps of SNR ≥ 2 (2069 positives, 18074 negatives), (2) all stamps of SNR ≥ 2 located at a radius in [30, 140] (554 positives, 1969 negatives), (3) all stamps of SNR ≥ 2.5 located at a radius in [30, 140] (492 positives, 558 negatives).

 Relevance of speckle seems to increase as the radius is narrowed to the « proper » ring around the star

Current results - single versus image dedicated classifier

- 1. Image dedicated classifier: a classifier is learnt for a given snr map and is meant to be used only on this map
- 2. Single classifier: a single classifier is learnt from all the available snr maps once and for all.

	BT2			BT1			
	#inj	#found	#cand	#inj	#found	#cand	
Single classifier							
4 stars	140	120	18	29	23	23	
One classifier							
per image							
HD108767B	26	22	10	7	5	11	
HIP1993	37	33	0	8	6	0	
HIP12394	39	26	2	6	4	2	
HIP107345	38	38	0	8	7	1	
Total	140	119	12	29	22	14	

Table 3. Comparing a single classifier trained over the 4 images to a classifier dedicated to each image.

Current results - precision and recall

Precision: How many retrieved items are relevant ? **Recall**: How many relevant items are retrieved ?

The « best » threshold is determined from the f-score: $F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{(\beta^2 \times precision) + recall}$

th = 0.5

BT1

 $\beta = 1.5$

125 128

 $\beta = 2$

 $\beta = 1$

BT2

 $\beta = 1.5$

Fig. 9. Number of objects found (in green) and candidates (in blue) according to the threshold. The grey line represents the number of injections.

23 _____25

 $\beta = 1$