

Architecture of planetary systems

How do the planets form?

Célia DESGRANGE

Supervisors: Gaël Chauvin, Julien Milli, and Thomas Henning

Wide diversity of architectures of planetary systems Protoplanetary disks (1–6 Myr)

Garufi et al. (2017)

Early stage of formation: observation of cavity, rings, spirals... **In older systems:** still observe diverse architectures e.g. presence of belts, different types of planets, some with circumplanetary disk.

To what extent the architecture of a system can help us to learn how do planets form?

Do planets in a given system share similar properties?

"Peas in a pod" model

Intra-system uniformity:

From Kepler observations, pairs of exoplanets are similar in size and mass, and evenly spaced orbits (caused by accretion/migration competition?)

e.g. Millholland+2017; Weiss+2018; Gilbert & Fabrycky 2020

Gilbert & Fabrycky 2020

Where do the planets form?

A favorable place to form planetesimals is expected to be the **snow line** (accumulation of materials). (e.g. Ida+2016, Schoonenberg+2017, Drazkowska+2018)

Problem: formation of inner rocky planetesimals (and planets)

Recently, Morbidelli et al. 2022 (Nature Astronomy) shed light on another favorable region: the silicate sublimation line.

Can we predict what are the planets in a system based on an a priori knowledge?

Star properties:

 $\begin{array}{l} \textbf{Mass} \Rightarrow disk \; mass \Rightarrow \\ \textbf{quantity of materials} \\ \textbf{available (e.g.} \\ \textbf{Schlecker+2021)} \end{array}$

Metallicity

Planet properties:

Eccentric small planet \Rightarrow may expect an eccentric giant planet

Eccentric giant planet \Rightarrow likely no inner small planet (e.g. Baruteau+2020, Bitsch+2020, Schlecker+2021)

Inner Super-Earth \Rightarrow favorable to the presence of outer giant planets? (e.g. Zhu&Wu2018, Schlecker+2021)

 \rightarrow Super-Earth project

Belt properties:

Is there a **cavity** or a **wide gap** between two belts? \rightarrow **HD 95086 project**

Plan

2 Correlation between inner super-Earth and outer giant planets

3 The multi-belt planetary system HD 95086

Super-Earth project: Objective

How do the Super-Earths form ?

 $\text{Super-Earth} \simeq 1\text{--}2~R_{Earth} \simeq 1\text{--}20~M_{Earth}$

 \Rightarrow most abundant type of exoplanets, but their location close to their host star raises questions on their formation...

Super-Earth project: Objective

How do the Super-Earths form ?

 $\textbf{Super-Earth} \simeq 1\text{--}2~R_{Earth} \simeq 1\text{--}20~M_{Earth}$

 \Rightarrow most abundant type of exoplanets, but their location close to their host star raises questions on their formation...

2 possibilities:

Could close-in Super-Earths have formed in-situ at typically less than 1 au?

or,

Did they form further out in the planet-forming disk and migrated inwards?

and thus,

Could there be a correlation between the presence of Super-Earths and outer giant planets ?

Super-Earths: Sample

Sample = 23 systems hosting at least one Super-Earth already detected by radial velocities (over a sample of 27 systems)

- Spectral type: MKG
- Close (< 20 pc)
- Old (100 Myr 10 Gyr)
- Six systems have a debris disk already discovered

 \Rightarrow we look for giant planets or brown dwarfs located at > 1 au from their star

Desgrange, Milli, Chauvin et al. (in prep); same for next Figures

Big picture: data processing and analysis

Célia DESGRANGE

Observation SPHERE-IRDIS and SPHERE-IFS

Example with GJ 674 system

1 among the 50 observations of the Super-Earths survey (*image post-processing with ANDROMEDA, Cantalloube+2015*)

$$H2 = 1.59 \ \mu m$$

 $YJ = 0.96 - 1.34 \ \mu m$

A point source in an image can have different origins...

On the image, **a point source** can be $\begin{cases}
(1) \text{ giant planet, brown dwarf} \\
(2) \text{ background star} \\
(3) \text{ instrumental artefact}
\end{cases}$

 $H2 = 1.59 \ \mu m$

 $YJ = 0.96 - 1.34 \ \mu m$

Criterion #1: bound companions or background stars?

Color Magnitude Diagrams in H23

vs empirical sequence of known substellar objects

CMD = easiest criterion to

disentangle between bound companions and background stars, but only indicative.

Promising detections but most of them are consistent with background contaminants.

Plot Color Magnitude Diagram: tool from Arthur Vigan, Mickaël Bonnefoy

Criterion #2: bound companions or background stars?

Motion Diagram for GJ 682

Compare the motion of the detection between two epochs

PMD = an absolute criterion to disentangle between bound companion and background star.

Detection consistent with a background star.

Derived expected background motion: tool from Arthur Vigan

Results: Status of the detections from SPHERE-IRDIS

The only promising detection is the already known brown dwarf in the GJ 229 system. All other detections from IRDIS are likely to be background stars.

A direct detection of the exoplanet GJ 832 b ? Observation 2017-05-27 (SPHERE-IFS)

- Discovery: RV (Bailey+2009)
- Orbital parameters: (Gorrini+2022) Mass: $0.74 \pm 0.06 M_{Jup}$ Period: 3838 ± 49 days (i.e. a semi-major axis of ~ 3.8 au) Low eccentricity: 0.02-0.06
- Significant proper motion anomaly (Gaia/Hipparcos) i.e. S/N ~ 14.1 (Kervella+2022)
- Gaia/Hipp signal consistent with the RV measurements assuming a circular orbit and an inclination of 60° (Kervella+2019)

A direct detection of the exoplanet GJ 832 b ? Observation 2022-07-29 (SPHERE-IFS)

- Discovery: RV (Bailey+2009)
- Orbital parameters: (Gorrini+2022) Mass: $0.74 \pm 0.06 M_{Jup}$ Period: $3838 \pm 49 \text{ days}$ (i.e. a semi-major axis of ~ 3.8 au) Low eccentricity: 0.02-0.06
- Significant proper motion anomaly (Gaia/Hipparcos) i.e. S/N ~ 14.1 (Kervella+2022)
 - Gaia/Hipp signal consistent with the RV measurements assuming a circular orbit and an inclination of 60° (Kervella+2019)

A direct detection of the exoplanet GJ 832 b ? Observation 2022-07-29 (SPHERE-IRDIS)

- Discovery: RV (Bailey+2009)
- Orbital parameters: (Gorrini+2022) Mass: $0.74 \pm 0.06 M_{Jup}$ Period: 3838 ± 49 days (i.e. a semi-major axis of ~ 3.8 au) Low eccentricity: 0.02-0.06
- Significant proper motion anomaly (Gaia/Hipparcos) i.e. S/N ~ 14.1 (Kervella+2022)
- Gaia/Hipp signal consistent with the RV measurements assuming a circular orbit and an inclination of 60° (Kervella+2019)

No detection do not mean no planet! Survey sensitivity.

evolutive models COND2003

Conversion :

Detection limit in terms of contrast ⇒ in terms of mass (tool: pyMESS2, priv. comm. Anne-Marie Lagrange)

Coupling detection methods:

RV & DI & PMa

Célia DESGRANGE

and what about work from the literature?

Observational results in literature

Positive correlation between Super-Earths and Cold Jupiters

• Zhu&Wu (2018):

31 systems harboring Super-Earths (RV) P(CJISE) = $29 \pm 18\%$ while P(CJ) = 10% (CJ ≥ 1 au, 0.3 M_{Jup})

• Bryan+ (2019):

65 systems harboring Super-Earths (RV+Transit) P(CJISE) = $32 \pm 7\%$ while P(CJ) = $7 \pm 3\%$ (CJ 1–20 au, 0.5–20 M_{Jup})

• Herman+ (2019): 12 systems harboring Super-Earths (Transit) P(CJ|SE) = 42% (CJ ≥ 1.6 au, $0.3 M_{Jup}$)

Rosenthal+ 2021

28 systems harboring super-Earths (among a survey of 719 FGKM stars) (RV+Transit) $P(CJ|SE) = 13 \pm 9\%$ while $P(CJ) = 7 \pm 1\%$ (CJ 3–7 au, 0.3–13 M_{Jup})

Theoretical numerical predictions from Bern models

Regarding solar-like stars (1 M_{\odot}):

Weak positive correlation but which depends on the mass and period limits of each planet category.

Influence from cold Jupiters on the **composition of inner super-Earth** (which are drier).

Driver of Super-Earths and cold Jupiter formation: disk mass, with formation of both of them in an intermediate mass disk.

(Schlecker+2021)

disk mass \iff stellar type

Theoretical numerical predictions from Bern models

Regarding solar-like stars (1 M_{\odot}):

Weak positive correlation but which depends on the mass and period limits of each planet category.

Influence from cold Jupiters on the **composition of inner super-Earth** (which are drier).

Driver of Super-Earths and cold Jupiter formation: **disk mass**, with formation of both of them in an intermediate mass disk.

(Schlecker+2021)

disk mass \iff stellar type

As for lower mass stars (M-stars):

No giants are expected around 0.3 M_{\odot} -stars, p = 0.02 around 0.5 M_{\odot} -stars and p = 0.09 around 0.7 M_{\odot} -stars. (Burn+2021)

Role of giant planets

Giant planets at large distances could:

(Positive correlation case)

- scatter Super-Earths inside their orbit
- trap Super-Earth in secular resonances
- increase eccentricity of Super-Earth cores via Kozai interactions, before orbit circularization at ≤ 1 au

(Negative correlation case)

- halt migration of Super-Earths formed at larger distances
- cut off the flow of solids to the inner disk
- stir up the velocity distribution of these solids

Role of giant planets

Giant planets at large distances could:

(Positive correlation case)

- scatter Super-Earths inside their orbit
- trap Super-Earth in secular resonances
- increase eccentricity of Super-Earth cores via Kozai interactions, before orbit circularization at ≤ 1 au

(Negative correlation case)

- halt migration of Super-Earths formed at larger distances
- cut off the flow of solids to the inner disk
- stir up the velocity distribution of these solids

No correlation case:

- independent formation processes between outer giant planets and Super-Earths (which formed in-situ)
- or a mix of everything

\rightarrow What is the timescale to form a planet ?

 \rightarrow Do Super-Earths form contemporary/before/after giant planets?

Conclusion on the project super-Earths

The **SPHERE Super-Earths project** demonstrates particularly relevant synergy to offer **a global view of planetary systems**, especially the ones hosting super-Earths.

Preliminary results:

- Can go down to 3-30 M_{Jup} planets, brown dwarfs at $\gtrsim 1$ au (even Y-spectral type!).
- Several candidates identified (≥ 330), likely background. Not a surprise based on our survey sensitivity coupled to planetary population synthesis from Bern models.

Limitations:

- ◆ Constrain the presence of outer giant planets remain limited to massive objects

 → interesting prospects for future studies (e.g.: smaller mass: JWST; closer: ELTs METIS/PCS).
- Age of the systems (poorly constrained and old, \sim Gyrs)

Conclusion on the project super-Earths

• Initial question: is there a correlation between super-Earth(s) and outer giant planet(s) ?

 \rightarrow our survey is not sensitive enough for giant planet in most systems, but in the case of outer brown dwarfs ($\gtrsim 13~M_{Jup},\gtrsim 3$ au): no robust detections.

• Other tracers of the presence of outer giant planets:

 \rightarrow stellar metallicity and eccentricity of the super-Earths already discovered or the presence of debris disks.

The exoplanetary system HD 95086

– star –

A-type 1.6 M_{\odot} $13.3^{+1.1}_{-0.6} \text{ Myr}$ 86.2 pc in Carina

- belts -

warm belt (7–10 au, ≃ 190 K) *cold belt* (106–320 au, ≃ 57 K)

 - exoplanet(s) – *HD 95086 b* 4–5 M_{Jup}

 52 au (≃ 620 mas) L6-type + 1, 2 giants ?

Courtesy of Kate Su (ALMA image) and Gaël Chauvin (SPHERE image)

Spectrum and atmospheric fitting of HD 95086 b

Atmosphere fitting: special package from Valentin Christiaens (open access: vip_hci library) Desgrange, Chauvin, Christiaens et al. 2022; same for next Figures

Célia DESGRANGE	Architecture of planetary systems
-----------------	-----------------------------------

The exoplanet HD 95086 b is red and under-luminous

Atmospheric versus internal models

Best atmospheric solutions (e.g. from BT-Settl, Drift-Phoenix, Madhusudhan+11 cloud AE i.e. localized forsterite clouds grids) **often incompatible with internal models** (here: BEX-Hot).

Madhusudhan et al. 2011 cloud A (extended forsterite clouds) grids are compatible with BEX-Hot grids.

Astrometric positions and orbital fitting of HD 95086 b

Orbital fitting: MCMC tool from Hervé Beust

Additional exoplanet(s) ?

We look for at least one additional giant planet between ~ 10 and 35 au.

Crédits: Gaël Chauvin

Constraints on the researched planet c

Derivation detection limits: pyMESS2 tool from Anne-Marie Lagrange

Conclusion on the planetary system HD 95086

- Emblematic system (disk+planet), many observations from different telescopes/instruments, ongoing studies (e.g. GRAVITY, ALMA), and prime target for future observational facilities (JWST-GTO, ELTs..)
- **Reddeness of the exoplanet HD 95086 b: clouds or circumplanetary disk ?** the answer could be given by high spectral resolution? (HiRISE?)
- Still looking for the **exoplanet c**, my guess: interferometric observations from JWST-NIRISS may find it!

Conclusion

Global conclusion

Architecture of planetary systems requires to have a global picture on planetary systems

 \rightarrow coupling detection methods (DI, interferometry, RV, Gaia, Transit...) for a same system, and ideally for a same planet to get better constraints.

Conclusion

Global conclusion

Architecture of planetary systems requires to have a global picture on planetary systems

 \rightarrow coupling detection methods (DI, interferometry, RV, Gaia, Transit...) for a same system, and ideally for a same planet to get better constraints.

Célia DESGRANGE

Thank you for your attention!

celia.desgrange@univ-grenoble-alpes.fr

or

desgrange@mpia.de