Spectra of Imaged Exoplanets • 20 years of discoveries •

Mickaël BONNEFOY (Institut de Planétologie et d'Astrophysique de Grenoble)

COBREX meeting • Oct 6, 2022

Imaged planets are young and hot

M=6 M_{Jup}

T_{eff}=2000 K

 $\log g = 3.5$

 T_{eff} =400 K

 $\log g = 4.2$

Temperature and gravity Mass

Involved physics?

Formation tracers

Atmospheric composition : tracer of formation mode?

Contrast and angular resolution: Adaptive Optics & coronography

Coupling with spectrographs

Coupling with spectrographs

Contrast and angular resolution: Adaptive Optics & coronography

1994 -ESO3.6m/Come-On+ SH WFS; 62 actuators;

Sr < 10% Janson et al. 07

2005 -VLT/NACO SH WFS; 185 actuators

Sr = 40-50% Neuhäuser et al 05

2015 SPHERE/IRDIS SH WFS; 1200 actuators

Courtesy: G. Chauvin

Coupling with Integral Field Spectrographs

Spectral resolution = quantity of spectroscopic info

 $\begin{array}{l} \text{Large absorption bands} \\ R_{\lambda} \thicksim 100 \qquad (\text{H}_2\text{O}, \text{CH}_4, \text{etc.}) \end{array}$

→ T_{eff}, clouds properties

 $\begin{array}{l} Atomic \ and \ molecular \ absorptions \\ R_{\lambda} \thicksim 5000 \quad (Na \ I, K \ I, CO, VO, FeH, TiO, etc.) \end{array}$

→ Molecular abundances, RV (inaccurate)

 $\begin{array}{l} \mbox{Tiny doublets resolved, line} \\ R_\lambda \thicksim 50000 \mbox{ profile, comb of lines} \\ (K \ I, CO, FeH, etc.) \end{array}$

Accurate RV, v.sin(i), structures of the atmosphere, surface inhomogeneities

xAO + Coronograph + IFU low-R (lenslets)

Med/high-R cross-disperser [+ coupling to (x)AO + coronograph]

COBREX meeting - October 6, 2022

Young exoplanets are red and can be underluminous

COBREX meeting - October 6, 2022

Imaged exoplanets : similar to « free floating planets »?

Imaged exoplanets : similar to « free floating planets »?

20 mins of obs. with SPHERE/IRDI

Imaged exoplanets : similar to « free floating planets »?

Some hints for surface features (holes in the cloud deck)

Some hints for surface features (holes in the cloud deck)

COBREX meeting - October 6, 2022

Atmospheric retrieval: data-driven approach

Advantages

- Flexible
- Abundances of individual molecules
- Pressure-temperature profiles

COBREX meeting - October 6, 2022

Downfalls

- Loose connection to physics
- Bias in the abundances (clouds)
- Computation cost

Atmospheric retrieval: some examples

Mollière et al. 2020

COBREX meeting - October 6, 2022

29

Forward modeling: driven by models

Advantages

- Use of detailed cloud models
- Efficient (medium and high-resolution)
- Test of model inconsistencies

COBREX meeting - October 6, 2022

Downfalls

- Limited number of free parameters
- Not flexible
- Relies on grid interpolations

Imaged exoplanets : key role of gravity on clouds

Charnay et al. (2018)

Bonnefoy et al. (2016)

COBREX meeting - October 6, 2022

Imaged exoplanets : key role of gravity on clouds

Reduced gravitational settling

Enhanced vertical mixing

Imaged exoplanets : do we really need clouds?

Tremblin et al. 2015, 2016

Imaged exoplanets : do we really need clouds?

Medium/high resolution : abundance ratio

Konopacky et al. 2013

Medium/high resolution : abundance ratio

HR 8799 b (OSIRIS, Barman et al. 2015)
Exo-REM (T_{eff} ~ 1015 K ; C/O ~ 0.55)

b c d <u>20 AU</u> 0.5″

Medium/high resolution : isotopic abundance ratio

Recent promising frameworks

Random Forests (Marquez-Neila et al. 2018) (Komba et al. in prep) H_2O HCN \mathbf{NH}_3 -1(κ_0 -101000 2000 -10-5-10-5-10-50 -10 H_2O NH_3 T (K) HCN κ_0

Bayesian Neural Network

(Cobb et al. 2019)

Recent promising frameworks

Bayesian inference with model and instrument error imputation

Compling the detection and characterization

Cross-correlation of spectra with molecular templates

40

Compling the detection and characterization

The molecular mapping technique

Compling the detection and characterization

The molecular mapping technique

Hoeijmakers et al. 2018 COBREX meeting - October 6, 2022

Access to MIR

COBREX meeting - October 6, 2022

Access to MIR

COBREX meeting - October 6, 2022

Access to MIR

Characterizing the youngest exoplanets

IIII Characterizing the youngest exoplanets

Discovery of forming exoplanets

COBREX meeting - October 6, 2022

PDS70 b and c

Two accreting giant planets at 22 and 34au

Within a circumstellar disk cavity

Keppler et al. 2018 Haffert et al. 2019 Benisty et al. 2021

45

IIII Characterizing the youngest exoplanets

Characterizing the youngest exoplanets

Discovery of forming exoplanets

Summary

- High-fidelity spectra of young Jovian exoplanets
- Empirical approach:

young planets are red and faint: role of dust clouds?

free-floating exoplanets = analogues of imaged exoplanets around stars

Modeling:

two different inversion methods (forward modelling and retrieval) models with different proposed ingredients new problematics emerging (systematics in models, etc)

Youngest exoplanets

witnessing accretion phenomenon complex environment around the planet (disk material)

Prospects

