Exoplanet detection with high contrast imaging First results on a small survey

Antoine CHOMEZ

Supervisors : Anne-Marie LAGRANGE (LESIA/OBSPM) | Maud LANGLOIS (CRAL) Philippe DELORME (IPAG) | Gael CHAUVIN (Lagrange/OCA)

COBREX

"This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (COBREX; grant agreement n° 885593)"

Introduction

THESIS : Exoplanet detection with high contrast imaging

- Reprocess the entire SPHERE archive (young stars)
- Use of a new algorithm : PACO
- Test bed on a small sample of close and young solar-type stars

The PACO algorithm

Algorithm developed to process HCI observation (PAtch COvariance, Flasseur et al. 2018)

- Statistical data-driven modelling of noise at local scale
- Provide statistically-based SNR maps following N(0,1)
- No PSF subtraction step

We used robust PACO ASDI (Flasseur et al. 2020ab)

Robustness to bad frames

2FX

 ASDI allow better noise estimation and optimal spectral combination following a prior

Priors creation for PACO ASDI

Priors are used to optimally combine multi wavelength data following weights → spectral priors, maximize snr of sources We choose to build our spectral priors based on Exo-Rem model (~10 000 spectra at R=500, Charnay et al. 2019)

IRDIS spectral priors

Exploring the spectral diversity

BREX

Study the sensibility of PACO to various number of priors with fake injected planet of various spectral types

IRDIS spectral priors

Impact on false positive rate of adding prior

C BREX

IFS spectral priors

 $12 - \times \times$

10

8

6

 $\times_{\times \times \times}$

ó

20

3

Spectral prior

20

Mini-survey : sample definition

All (23) young (< 150 Myr), close (<60 pc) solar type stars observed during the SPHERE/SHINE F150 (part of the SPHERE GTO survey, Desidera et al. 2021) survey with H23/JY filters

Designed as a test bed for the future massive reduction (all targets).

Results : detection classification ~

-0

9

erc

Results : IRDIS contrast comparison with SHINE F150

Improving astrometric and photometric error budget

- Updated astrometric error budget thanks to :
 - Lessons learn from 7 years of service of SPHERE (following Maire+2021)
 - Improved pré-reduction pipeline and centering (thanks to Jule's work)
- Improved photometric error budget
 - Using SPARTA data
 - Using the DTTS of SPHERE

- Gaia allow us to have direct hints of the presence of a companion
 - Gaia alone cannot probe for long period companion (limited by the data duration)
 - \rightarrow Use Gaia-Hipparcos PMa

But using PMa to probe for HCI detectable companions is **not enough** \rightarrow we need to account for the excess noise

HD 104125 (100.4 pc, A2V) $\sigma_{PMa} = 8.8$ $\sigma_{\text{EN}} = 31$

BREX

erc

HD 135778 (123 pc, F3V) $\sigma_{PMa} = 4.5 \quad \sigma_{EN} = 0.3$

COBREX

REX

P111 proposal focusing on unobserved (or bad observed) young stars with high σ_{PMa} and little to none σ_{EN}

+ paper ?

Warning : Gaia can be sensitive to the a close massive companion, but a faint distant signal can be hidden in it

* * * * * * *

Forthcoming work

3 upcoming milestones :

- Re-analysis of the F150 (IRDIS : ~ 280 PACO reductions ready)
- Analysis of the F250 : IRDIS ready to be launch
- The Sco-Cen sample (SPHERE x GPI) : IRDIS ready to be launch

IFS pipeline is (nearly) ready

Results : detection limits using MESS2

HIP13402, 2016-10-14, H23 band, DI+RV combination

Grandjean et al, 2020

BREX

erc

17

Results : detection limits using MESS2

HIP 1481, 2015-10-26, H23 band, DI only

HIP 1481, 2015-10-26 + 2016-09-18, H23 band, DI only

COBREX

BACKUP SLIDE : contrast

BACKUP SLIDE : contrast

BACKUP SLIDE : contrast

SNR of false positive

Contrast : All priors

